University of Waterloo
 CS240E, Winter 2023
 Assignment 5 Post-Mortem

Question 1

- in Q1b, many solutions mentioned the loose (but sufficient) lower bound of $(n+1)$ on the number of leaves. In fact, there could be up to $(2 n+1)$ outcomes:
- p_{1} has x-coord a
$-\vdots$
- p_{n} has x-coord a
- p_{1} has y-coord a
-
- p_{n} has y-coord a
- none of p_{1}, \ldots, p_{n} have x - or y-coord a
- in Q1c, many solutions claimed that we can reduce search to partial match without actually giving the reduction.

Question 2

- This question was generally done well.

Question 3

Q3 was done very well but

- many students just found a deepest internal node without justification
- many solutions stated $|\Sigma|=3$. In fact, the end-of-word character symbol is not part of the alphabet (see line 3915 in the notes)
- many solutions introduced unnecessary augmentations. Please make sure you understand the definition of a compressed trie.
- many solutions wrote unnecessarily complicated pseudocode. The main goal of pseudocode is to clearly convey the idea rather than to use unnecessary, language-specific syntax
- most explanations were correct, but errors in suffix tree terminology were fairly common. Again, it is important to review the definition of a compressed trie.
- many correctness arguments were unnecessarily long. It is important to be able to argue correctness concisely, especially in an exam setting. See solutions for a concise argument of correctness.
- many solutions referred to "the" internal node of greatest depth. Yes, the greatest depth is well-defined, but there might be more than one node that achieves this depth.

Question 4

- This question was generally done well.

Question 5

- some solutions made small errors in Q5a
- many solutions did not complete the base case in Q5c. To go down two steps in the inductive step, we need to prove the base case for both $i=2$ and $i=3$

