
University of Waterloo

CS240E, Winter 2023

Programming Assignment 2

Due Date: Wednesday, March 29, 2023 at 5pm

Be sure to read the assignment guidelines (http://www.student.cs.uwaterloo.ca/

~cs240e/w23/guidelines.pdf).

Question 1 [20 marks]

These days, most smartphones use word completion, i.e., as you type the phone suggests
commonly used words that fit the initial characters that you have typed. This assignment
asks you to implement this.

Formally, implement a realization of a dictionary D that stores word-frequency pairs.
Dictionary D supports the following operations:

� access(string w): If w ̸∈ D, then insert w with frequency 1 into D. If w ∈ D, then
increase its frequency by 1.

For example, if you executed access("break"), access("crazy"), access("break")
onto an initially empty dictionary, and then print it, the output should be

break, 2

crazy, 1

� getCompletions(string w): This gets the most frequent word completions as if you
had typed string w one character at a time.

Formally, assume k = |w|. Then for i = 0, . . . , k − 1, the output will be a word x that
is in D and for which w[0..i] is a prefix. Among all such extensions x, print the one
with the largest frequency. If there are multiple extensions x that all have the largest
frequency, return the lexicographically smallest among them. If there is no word that
extends w[0..i] then the output should be ‘No extensions’.

We illustrate the desired output-format with the following example. Assume your
dictionary currently contains

taut, 5

teal, 3

teamster, 4

teatowel, 4

total, 6

then the output of getCompletions(tear) should be

Best extension of t is total

Best extension of te is teamster

Best extension of tea is teamster

No extension of tear

1

http://www.student.cs.uwaterloo.ca/~cs240e/w23/guidelines.pdf
http://www.student.cs.uwaterloo.ca/~cs240e/w23/guidelines.pdf

Implement a dictionary that supports the above two operations, as well as a print-
function. Your C++ program must provide a main function that accepts the following
commands from stdin:

� p - prints the current dictionary in the style illustrate above, i.e., prints the words
(one word per line) followed by a comma and the frequency. Words must be listed in
lexicographic order.

� a word - performs an access with the given word w. Nothing is printed to the output.

� g word - performs getCompletions with the given word w. In response, it writes the
list of completions as illustrated above, using one line per character of w.

� x - terminates the program.

Evaluation. 40% of the marks will depend on having an efficient implementation for
access and wordCompletion. We will determine efficiency by running your code on large
examples, doing both access and getCompletions (with no promises about the ratio be-
tween these two types of queries) and checking whether your program times out.

Design ideas: There are very simple methods to obtain the correct answer (e.g. store all
words in a dynamic array). This would be good enough to obtain the correctness marks,
hence a passing grade.

To obtain the efficiency marks, you should use a dictionary for words, i.e., a trie. (The
variant of trie is up to you.) Also, for any node v in the trie you must be able to find
the maximum frequency among the descendants of v, so maintain this information with v
(and break ties by lexicographic order). You should convince yourself that you can then do
getCompletion(w) and access(w) in roughly O(|w|) time, much faster than what you could
do in a dynamic array. (‘Roughly’ hides a few terms that usually are not big, such as the
time to find a child in the trie.)

Rules and Assumptions:

� All words are non-empty and use only characters in a-z. In particular, they do not
contain $.

� The words in D are not necessarily prefix-free. (It is your design-choice how to handle
this in your trie.)

� There is no limit on the number of words, or the length of a word, other than that
they are int.

� We will do getCompletions and print only when D contains at least one word.

� You are allowed to use binary_search, and vector from the STL. (You should not
need them if you implement a trie.) You are also allowed to use iostream, string

and stringstream from the STL.

2

� ‘Printing on one line’ means that the line must end with a newline. Trailing whitespace
at the end of your output lines will be ignored by our test scripts.

Place your entire program in the file wordCompletion.cpp. Submit your solution to
Marmoset. Marmoset will be set up to translate your program with g++ -std=c++17.

3

	[20 marks]

