
CS 240 – Data Structures and Data Management

Module 10: Compression

A. Hunt, A. Jamshidpey O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

version 2023-03-28 10:02

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 1 / 28

Fourier Analysis – Basic Idea

Convert time or space-dependent data into the representation

f (t) = a0 + a1 cos(qt) + b1 sin(qt) + a2 cos(2qt) + b2 sin(2qt) + · · ·

i.e. infinite sum of increasingly high frequency sine/cosines.

The ai and bi coefficients now determine the function.

Could view this as:

a weird (non-polynomial) interpolation problem: what coefficients let
us fit this particular summation form to a given function?

an expansion/approximation of the function as an infinite sum of
sines/cosines. (e.g., compare with our old friend, the Taylor series.)

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 2 / 28

Continuous Fourier Series

Goal is to represent any f (t) as an infinite sum of trig functions:

f (t) = a0 +
∞∑

k=1
ak cos

(
2πkt

T

)
+

∞∑
k=1

bk sin
(

2πkt
T

)

ak , bk indicate the “information”/amplitude for each sinusoid of a specific
period T

k , or frequency k
T .

Higher integer k indicates shorter period & higher wave frequency.

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 3 / 28

Continuous Fourier Series
We can write any periodic function over a period T as

f (t) = a0 +
∞∑

k=1
ak cos

(
2πkt

T

)
+

∞∑
k=1

bk sin
(

2πkt
T

)

with coefficients are given by solving the following integrals:

a0 =
∫ 2π

0 f (t)dt
2π

ak =
∫ 2π

0 f (t) cos(kt)dt∫ 2π
0 cos2(kt)dt

bk =
∫ 2π

0 f (t) sin(kt)dt∫ 2π
0 sin2(kt)dt

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 4 / 28

Fourier series with complex exponentials

Now, given our earlier sinusoidal expression of a function f (t)

f (t) = a0 +
∞∑

k=1
ak cos(kt) +

∞∑
k=1

bk sin(kt),

we can express it more concisely as

f (t) =
+∞∑

k=−∞
ckeikt

where the ck coefficients are complex numbers.

There exists a simple conversion: ck ⇐⇒ ak , bk .

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 5 / 28

Fourier Series – Truncating

An approximation of a function could be achieved by truncating the series
to a finite number of sinusoids:

f (t) ≈
+M∑

k=−M
ckeikt

Today, we’ll extend Fourier ideas to discrete data, rather than functions.

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 6 / 28

Extracting Meaning
But what does it all mean? Various
“physical” interpretations, depending on
context:

In electrical signals, the
∣∣∣ck
∣∣∣ describe

the power at given frequency k
T .

High frequencies (i.e., large k terms)
are often noise in a signal. Filtering out
(dropping) these frequencies may clean
the data.

Or, high frequency image components
might suggest edges (discontinuities).
Can be used to detect features, or
sharpen/enhance edges.

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 7 / 28

Discrete Input Data

Consider now a vector of discrete
data.

e.g., f0, f1, f2, . . . , fN−1 for N
uniformly spaced data points (N
assumed even).

Assume data are from an unknown
function f (t), evaluated at each

tn = n∆t = nT
N , for

n = 0, 1, . . . , N − 1.

i.e. fn = f (tn).

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 8 / 28

Discrete Fourier Transform as interpolation

We have N = 128 points, and period
T = 32.

For N points, we will use N degrees
of freedom (i.e., N coefficients) to
exactly interpolate the data.

Assuming N is even, we can
approximate with a truncated Fourier
series as:

f (t) ≈
N/2∑

− N
2 +1

cke
(2πi)kt

T

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 9 / 28

Discrete Fourier Transform

Plugging in each of our N data points (tn, fn) into the expression

f (t) ≈
N/2∑

k=− N
2 +1

cke
(2πi)kt

T

will give us N equations, involving unknowns coefficients, ck .

This will lead towards our Discrete Fourier Transform.

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 10 / 28

Discrete Fourier Transform

For notational convenience we defined:

W = e
(

2πi
N

)
W is an Nth Root of Unity, since it satisfies

W N = e2πi = 1

So

fn =
N−1∑
k=0

Fkei
(

2πnk
N

)
=

N−1∑
k=0

FkW nk

Discrete data fn is expressed as a sum of coefficients, Fk , times complex
exponentials, W nk .

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 11 / 28

Discrete Fourier Transform

Typically, we want to learn/achieve something by processing the data
(Image data, audio samples, prices, intensities, etc.).

In theory, the time-domain data tells us everything!

In practice, Fourier coefficients provide easier access to useful
insights/information for certain problems.

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 12 / 28

Note: A Lack of Standardization

Various definitions of DFT/IDFT pairs can be found in the literature/code.

We use the following, with 0-based indexing:

fn =
N−1∑
k=0

FkW nk and Fk = 1
N

N−1∑
n=0

fnW −nk

SciPy (and some other sources) use:

fn = 1
N

N−1∑
k=0

FkW nk and Fk =
N−1∑
n=0

fnW −nk

Note the different placement of the constant scaling by 1
N .

So be careful (a) when coding in Jupyter, and (b) reading other sources!

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 13 / 28

Slow Fourier Transform

A direct implementation of Fk = 1
N
∑N−1

n=0 fnW −nk takes O(N2) complex
floating-point operations.

Essentially two nested for loops:

For k = 0 : N − 1 //iterate over all k unknown coeffs
Fk = 0 //initialize coefficient to zero
For n = 0 : N − 1 //iterate over all n data values

Fk+ = fnW −nk //increment by scaled data value
End
Fk = Fk/N //normalize

End

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 14 / 28

A Faster Fourier Transform

Design a divide and conquer strategy.

We’ll:

1 Split the full DFT into two DFT’s of half
the length.

2 Repeat recursively.

3 Finish at the base case of individual
numbers.

(If N ̸= 2m for some m, we can pad our initial
data with zeros.)

Key question: How can we split up the DFT?

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 15 / 28

Dividing it up
The usual DFT of the sequence fn is:

Fk = 1
N

N−1∑
n=0

fnW −nk

We’ll show we can express it with DFTs of two new arrays of half the
length (N/2):

gn = 1
2
(
fn + fn+ N

2

)
hn = 1

2
(
fn − fn+ N

2

)
W −n

where n ∈
[
0, N

2 − 1
]
.

Then
Feven = G = DFT (g) and Fodd = H = DFT (h)

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 16 / 28

Big Picture – Recursive Butterfly FFT algorithm

N = 8 = 23, so we have 3 recursive stages.

Note: But coefficient output order is scrambled.

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 17 / 28

1D Grayscale Image

We can think of a 1D array of grayscale values as a “1D image”.

Each entry gives the pixels’ intensity/gray values

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 18 / 28

Processing “1D Images”

For grayscale images, we can perform a DFT on the pixels’ intensity/gray
values.

Notice: Plot is only the first 16 coefficients, since real data implies
conjugate symmetry!

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 19 / 28

Processing “1D Images”

In this example

Average is about 0.5, so F0 ≈ 0.5. (Well, actually ∼ 15 since plot
uses Jupyter’s convention.)

Overall pattern has few coefficients active. Can store it cheaply just
with F0, F4, F8 and F12.

If we instead replace the 3rd bump’s top with a flat line, the simple
repetition is destroyed.

Many more Fourier coefficients will become active / non-zero.
Becomes expensive to store!

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 20 / 28

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 21 / 28

Compression of 1D Images

Although many coefficients are non-zero, many still have fairly small
moduli/magnitude...

...so those frequencies contribute less to the image.

Compression Strategy:

Create an (approximate) compressed version of the image, fn, by
throwing away “small” Fourier coefficients: |Fk | < tol

To reconstruct the image, run the inverse DFT to get modified data
(pixels), f̂n.

Discard the imaginary parts of f̂n, to ensure new data is strictly real.

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 22 / 28

Comparison

Comparison:

Recovered “image” hopefully
has fairly small deviations
from the original “true” data.

But! We store fewer Fourier
coefficients and so save
space!

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 23 / 28

Image Compression in 2D

Ultimately, this is what we would like to achieve...

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 24 / 28

Image Processing in 2D

How does the DFT work for 2D (grayscale) image data? i.e., we have a
2D array X of per-pixel intensities, of size M × N. Assume we have scaled
image data, so 0 ≤ X (i , j) ≤ 1.

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 25 / 28

2D Fast Fourier Transform - Complexity

Performing M 1D FFT’s of length N: M.O(N log2 N) = O(MN log2 N).

Performing N 1D FFT’s of length M: N.O(M log2 M) = O(MN log2 M).

So total complexity is O(MN(log2 M + log2 N)).

Simple Image Compression in 2D:

Take the 2D FFT of image intensities, threshold the magnitudes of the
Fourier coefficients and discard small ones, as in 1D. Store only
coefficients, and do IFFT when you want to view it again.

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 26 / 28

Block-based Image Compression

Often an image is subdivided into smaller blocks: 16 × 16 or 8 × 8 pixels.

Compression is performed on each block independently.

Pixels within a block often have similar/related data, and hopefully
compress more effectively.

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 27 / 28

2D Fourier Plot for a 16 × 16 block

Hunt, Jamshidpey, Veksler (CS-UW) CS240 – Module 10 Winter 2023 28 / 28

	Fourier Analysis – Basic Idea
	Continuous Fourier Series
	Continuous Fourier Series
	Fourier series with complex exponentials
	Fourier Series – Truncating
	Extracting Meaning
	Discrete Input Data
	Discrete Fourier Transform as interpolation
	Discrete Fourier Transform
	Discrete Fourier Transform
	Discrete Fourier Transform
	Note: A Lack of Standardization
	Slow Fourier Transform
	A Faster Fourier Transform
	Dividing it up
	Big Picture – Recursive Butterfly FFT algorithm
	1D Grayscale Image
	Processing ``1D Images''
	Processing ``1D Images''
	
	Compression of 1D Images
	Comparison
	Image Compression in 2D
	Image Processing in 2D
	2D Fast Fourier Transform - Complexity
	Block-based Image Compression
	2D Fourier Plot for a 1616 block

