CS 240 - Data Structures and Data Management

Module 2E: Priority Queues - Enriched

A. Hunt A. Jamshidpey O. Veksler
Based on lecture notes by many previous cs240 instructors
David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

Outline

(2) Merging heaps

- More PQ operations
- Meldable Heaps
- Binomial Heaps

Outline

(2) Merging heaps

- More PQ operations
- Meldable Heaps
- Binomial Heaps

Merging Priority Queues

New operation: $\operatorname{merge}\left(P_{1}, P_{2}\right)$

- Given: two priority queues P_{1}, P_{2} of size n_{1} and n_{2}.
- Want: One priority queue P that contains all their items

Merging Priority Queues

New operation: $\operatorname{merge}\left(P_{1}, P_{2}\right)$

- Given: two priority queues P_{1}, P_{2} of size n_{1} and n_{2}.
- Want: One priority queue P that contains all their items

This will take time $\Omega\left(\min \left\{n_{1}, n_{2}\right\}\right)$ if $P Q s$ stored as array. Can we do it faster if PQs are stored as trees?

Merging Priority Queues

New operation: $\operatorname{merge}\left(P_{1}, P_{2}\right)$

- Given: two priority queues P_{1}, P_{2} of size n_{1} and n_{2}.
- Want: One priority queue P that contains all their items

This will take time $\Omega\left(\min \left\{n_{1}, n_{2}\right\}\right)$ if PQs stored as array.
Can we do it faster if PQs are stored as trees?
Three approaches (where $n=n_{1}+n_{2}$):

- Merge binary heaps (stored as trees). $O\left(\log ^{3} n\right)$ worst-case time (no details)
- Merge meldable heaps that have heap-property (but not structural property). $O(\log n)$ expected run-time.
- Merge binomial heaps that have a different structural property. $O(\log n)$ worst-case run-time.

Outline

(2) Merging heaps

- More PQ operations
- Meldable Heaps
- Binomial Heaps

Meldable Heaps

- Priority queue stored as binary tree
- Heap-order-property: Parent no smaller than child.
- No structural property; any binary tree allowed.
- Tree-based: Store nodes and references to left/right

PQ-operations in Meldable Heaps

Both insert and deleteMax can be done by reduction to merge.
P.insert(k, v):

- Create a 1-node meldable heap P^{\prime} that stores (k, v).
- Merge P^{\prime} with P.
P.deleteMax():
- Stash item that is at root.
- Let P_{ℓ} and P_{r} be left and right sub-heap of root.
- Update $P \leftarrow \operatorname{merge}\left(P_{\ell}, P_{r}\right)$
- Return stashed item.

Both operations have run-time O (merge).

Merging Meldable Heaps

- Idea: Merge heap with smaller root into other one, randomly choose into which sub-heap to merge.
- Structural property not maintained

```
meldableHeap::merge( }\mp@subsup{r}{1}{},\mp@subsup{r}{2}{}
r},\mp@subsup{r}{2}{}\mathrm{ : roots of two heaps (possibly NIL)
returns root of merged heap
1. if r}\mp@subsup{r}{1}{}\mathrm{ is NIL return }\mp@subsup{r}{2}{
2. if r}\mp@subsup{r}{2}{}\mathrm{ is NIL return }\mp@subsup{r}{1}{
3. if r}\mp@subsup{r}{1}{}.key<\mp@subsup{r}{2}{}.key \operatorname{swap}(\mp@subsup{r}{1}{},\mp@subsup{r}{2}{}
4. // now r}\mp@subsup{r}{1}{}\mathrm{ has max-key and becomes the root.
5. randomly pick one child c of r}\mp@subsup{r}{1}{
6. replace subheap at c by heapMerge(c, r2)
7. return r}\mp@subsup{r}{1}{
```


Merge Example

Merging meldable heaps

Run-time? Not more than two random downward walks in a binary tree.
Let $T(n)=$ expected length of a random downward walk.
Theorem: $T(n) \in O(\log n)$.
Proof:

So merge (and also insert and deleteMax) takes $O(\log n)$ expected time.

Outline

(2) Merging heaps

- More PQ operations
- Meldable Heaps
- Binomial Heaps

Binomial Heaps

Very different structure from binary heaps and meldable heaps:

- List L of binary trees.
- Each binary tree is a flagged tree:

Complete binary tree T plus root r that has T as left subtree

- Flagged tree of height h has 2^{h} nodes.
- So $h \leq \log n$ for all flagged trees.
- Order-property: Nodes in left subtree have no-smaller keys. (No restrictions on nodes in the right subtree.)

Binomial Heap Operations

- insert: Reduce to merge as before.
- findMax:
- At each flag tree, root contains the maximum.
- Search roots in $L \Rightarrow O(|L|)$ time.
- We want L to be short.

Binomial Heap Operations

- insert: Reduce to merge as before.
- findMax:
- At each flag tree, root contains the maximum.
- Search roots in $L \Rightarrow O(|L|)$ time.
- We want L to be short.
- Proper binomial heap: No two flagged trees have the same height.
- Observation: A proper binomial heap has $|L| \leq \log n+1$.
- The flagged tree of largest height h has $h \leq \log n$.
- Can have only one flagged tree of each height in $\{0, \ldots, h\}$.

Making Binomial Heaps Proper

- Goal: Given a binomial heap, make it proper.
- Need subroutine: combine two flagged trees of the same height. This can be done in constant time. If r. key $\geq r^{\prime}$. key:

- Idea: Do this whenever two flagged trees have same height.
- Run-time to make proper: $O(|L|+\log n)$ if implemented suitably.

Making Binomial Heaps Proper

Making Binomial Heaps Proper

```
binomialHeap::makeProper()
1. }n\leftarrow\mathrm{ size of the binomial heap
2. compute }\ell\leftarrow\lfloor\operatorname{log}n
3. }B\leftarrow\mathrm{ array of size }\ell+1\mathrm{ , initialized all-NIL
4. }L\leftarrow\mathrm{ list of flagged trees
5. while L is non-empty do
6. }T\leftarrowL.pop(),h\leftarrowT.height
7. while }\mp@subsup{T}{}{\prime}\leftarrowB[h] is not NIL do
8. if T.root.key< T'.root.key do swap T and T'
9.
10.
11.
12. }\quadB[h]\leftarrow
13. // copy B back to list
14. for (h=0;h\leq\ell;h++) do
15. if B[h]}\not=\mathrm{ NIL do L.append(B[h])
```


Binomial Heap Operations

- Idea: Make binomial heap proper after every opration.
$\Rightarrow L$ always has length $O(\log n)$
\Rightarrow Each makeProper takes $O(\log n)$ time
- findMax: $O(\log n)$ worst-case time.
- merge: $O(\log n)$ worst-case time.
- Concatenate the two lists.
- Call makeProper.
- insert: $O(\log n)$ worst-case time via merge.
- deleteMax?

deleteMax in a binomial heap

- Search for maximum among roots, say it is in tree T
- Split $T \backslash\{$ root $\}$ into into flagged trees T_{1}, \ldots, T_{k}

- Merge $L \backslash T$ with $\left\{T_{1}, \ldots, T_{k}\right\}$
- Have $k \leq \log n \Rightarrow O(\log n)$ worst-case time.

Summary: All operations have $O(\log n)$ worst-case run-time.

