CS 240 - Data Structures and Data Management

Module 4: Dictionaries

A. Hunt A. Jamshidpey O. Veksler
Based on lecture notes by many previous cs240 instructors
David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

Outline

4) Dictionaries and Balanced Search Trees

- ADT Dictionary
- Review: Binary Search Trees
- AVL Trees
- Insertion in AVL Trees
- Restoring the AVL Property: Rotations

Outline

4 Dictionaries and Balanced Search Trees

- ADT Dictionary
- Review: Binary Search Trees
- AVL Trees
- Insertion in AVL Trees
- Restoring the AVL Property: Rotations

Dictionary ADT

Dictionary: An ADT consisting of a collection of items, each of which contains

- a key
- some data (the "value") and is called a key-value pair (KVP). Keys can be compared and are (typically) unique.

Operations:

- $\operatorname{search}(k)$ (also called findElement(k))
- insert (k, v) (also called insertlem (k, v))
- delete(k) (also called removeElement(k)))
- optional: closestKeyBefore, join, isEmpty, size, etc.

Examples: symbol table, license plate database

Elementary Implementations

Common assumptions:

- Dictionary has n KVPs
- Each KVP uses constant space (if not, the "value" could be a pointer)
- Keys can be compared in constant time Unordered array or linked list

```
search \Theta(n)
insert \Theta(1) (except array occasionally needs to resize)
delete }\Theta(n)\mathrm{ (need to search)
```

Ordered array
search $\Theta(\log n)$ (via binary search)
insert $\Theta(n)$
delete $\Theta(n)$

Outline

4 Dictionaries and Balanced Search Trees

- ADT Dictionary
- Review: Binary Search Trees
- AVL Trees
- Insertion in AVL Trees
- Restoring the AVL Property: Rotations

Binary Search Trees (review)

Structure Binary tree: all nodes have two (possibly empty) subtrees Every node stores a KVP
Empty subtrees usually not shown
Ordering Every key k in T.left is less than the root key. Every key k in T.right is greater than the root key.

(In our examples we only show the keys, and we show them directly in the node. A more accurate picture would be

BST as realization of ADT Dictionary

$B S T$::search(k) Start at root, compare k to current node's key.
Stop if found or subtree is empty, else recurse at subtree.

Example: BST::search(24)

BST as realization of ADT Dictionary

$B S T::$ search(k) Start at root, compare k to current node's key.
Stop if found or subtree is empty, else recurse at subtree.

Example: BST::search(24)

BST as realization of ADT Dictionary

$B S T::$ search(k) Start at root, compare k to current node's key.
Stop if found or subtree is empty, else recurse at subtree.

Example: BST::search(24)

BST as realization of ADT Dictionary

$B S T::$ search(k) Start at root, compare k to current node's key.
Stop if found or subtree is empty, else recurse at subtree.

Example: BST::search(24)

BST as realization of ADT Dictionary

$B S T$::search(k) Start at root, compare k to current node's key.
Stop if found or subtree is empty, else recurse at subtree.
BST::insert (k, v) Search for k, then insert (k, v) as new node Example: BST::insert $(24, v)$

Deletion in a BST

- First search for the node x that contains the key.
- If x is a leaf (both subtrees are empty), delete it.

Deletion in a BST

- First search for the node x that contains the key.
- If x is a leaf (both subtrees are empty), delete it.

Deletion in a BST

- First search for the node x that contains the key.
- If x is a leaf (both subtrees are empty), delete it.
- If x has one non-empty subtree, move child up

Deletion in a BST

- First search for the node x that contains the key.
- If x is a leaf (both subtrees are empty), delete it.
- If x has one non-empty subtree, move child up

Deletion in a BST

- First search for the node x that contains the key.
- If x is a leaf (both subtrees are empty), delete it.
- If x has one non-empty subtree, move child up
- Else, swap key at x with key at successor or predecessor node and then delete that node

Deletion in a BST

- First search for the node x that contains the key.
- If x is a leaf (both subtrees are empty), delete it.
- If x has one non-empty subtree, move child up
- Else, swap key at x with key at successor or predecessor node and then delete that node

Deletion in a BST

- First search for the node x that contains the key.
- If x is a leaf (both subtrees are empty), delete it.
- If x has one non-empty subtree, move child up
- Else, swap key at x with key at successor or predecessor node and then delete that node

Height of a BST

BST::search, BST::insert, BST::delete all have cost $\Theta(h)$, where $h=$ height of the tree $=$ max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h ?

- Worst-case:

Height of a BST

BST::search, BST::insert, BST::delete all have cost $\Theta(h)$, where $h=$ height of the tree $=$ max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h ?

- Worst-case: $n-1=\Theta(n)$
- Best-case:

Height of a BST

BST::search, BST::insert, BST::delete all have cost $\Theta(h)$, where $h=$ height of the tree $=$ max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h ?

- Worst-case: $n-1=\Theta(n)$
- Best-case: $\Theta(\log n)$. Any binary tree with n nodes has height $\geq \log (n+1)-1$
- Average-case:

Height of a BST

BST::search, BST::insert, BST::delete all have cost $\Theta(h)$, where $h=$ height of the tree $=$ max. path length from root to leaf

If n items are inserted one-at-a-time, how big is h ?

- Worst-case: $n-1=\Theta(n)$
- Best-case: $\Theta(\log n)$. Any binary tree with n nodes has height $\geq \log (n+1)-1$
- Average-case: Can show $\Theta(\log n)$

Outline

(4) Dictionaries and Balanced Search Trees

- ADT Dictionary
- Review: Binary Search Trees
- AVL Trees
- Insertion in AVL Trees
- Restoring the AVL Property: Rotations

AVL Trees

Introduced by Adel'son-Vel'skiĭ and Landis in 1962, an AVL Tree is a BST with an additional height-balance property at every node:

The heights of the left and right subtree differ by at most 1 .
(The height of an empty tree is defined to be -1 .)
Rephrase: If node v has left subtree L and right subtree R, then
balance $(v):=\operatorname{height}(R)-\operatorname{height}(L)$ must be in $\{-1,0,1\}$

$$
\begin{aligned}
& \text { balance }(v)=-1 \text { means } v \text { is left-heavy } \\
& \text { balance }(v)=+1 \text { means } v \text { is right-heavy }
\end{aligned}
$$

AVL Trees

Introduced by Adel'son-Vel'skiĭ and Landis in 1962, an AVL Tree is a BST with an additional height-balance property at every node:

The heights of the left and right subtree differ by at most 1 .
(The height of an empty tree is defined to be -1 .)
Rephrase: If node v has left subtree L and right subtree R, then
balance $(v):=\operatorname{height}(R)-\operatorname{height}(L)$ must be in $\{-1,0,1\}$

$$
\begin{aligned}
& \text { balance }(v)=-1 \text { means } v \text { is left-heavy } \\
& \text { balance }(v)=+1 \text { means } v \text { is right-heavy }
\end{aligned}
$$

- Need to store at each node v the height of the subtree rooted at it
- Can show: It suffices to store balance(v) instead
- uses fewer bits, but code gets more complicated

AVL tree example

(The lower numbers indicate the height of the subtree.)

AVL tree example

Alternative: store balance (instead of height) at each node.

Height of an AVL tree

Theorem: An AVL tree on n nodes has $\Theta(\log n)$ height.
\Rightarrow search, insert, delete all $\operatorname{cost} \Theta(\log n)$ in the worst case!

Proof:

- Define $N(h)$ to be the least number of nodes in a height- h AVL tree.
- What is a recurrence relation for $N(h)$?
- What does this recurrence relation resolve to?

Outline

4. Dictionaries and Balanced Search Trees

- ADT Dictionary
- Review: Binary Search Trees
- AVL Trees
- Insertion in AVL Trees
- Restoring the AVL Property: Rotations

AVL insertion

To perform $A V L:: i n s e r t(k, v)$:

- First, insert (k, v) with the usual BST insertion.
- We assume that this returns the new leaf z where the key was stored.
- Then, move up the tree from z, updating heights.
- We assume for this that we have parent-links. This can be avoided if

- If the height difference becomes ± 2 at node z, then z is unbalanced. Must re-structure the tree to rebalance.

AVL insertion

```
AVL::insert(k,v)
    1. }z\leftarrowBST::insert(k,v) // leaf where k is now stored
    2. while (z is not NIL)
    3. if (|z.left.height - z.right.height | > 1) then
    4. Let }y\mathrm{ be taller child of z
    5. Let x be taller child of }
    6. }\quadz\leftarrow\operatorname{restructure(x,y,z) // see later
    7. break // can argue that we are done
    8. setHeightFromSubtrees(z)
    9. z
```

```
setHeightFromSubtrees(u)
    1. u.height }\leftarrow1+\operatorname{max}{u.left.height,u.right.height
```


AVL Insertion Example

Example: AVL::insert(8)

Outline

(4) Dictionaries and Balanced Search Trees

- ADT Dictionary
- Review: Binary Search Trees
- AVL Trees
- Insertion in AVL Trees
- Restoring the AVL Property: Rotations

How to "fix" an unbalanced AVL tree

Note: there are many different BSTs with the same keys.

Goal: change the structure among three nodes without changing the order and such that the subtree becomes balanced.

Right Rotation

This is a right rotation on node z :

$$
\begin{aligned}
& \text { rotate-right(} z \text {) } \\
& \text { 1. } y \leftarrow z \text {.left, z.left } \leftarrow y . r i g h t, y . r i g h t ~ \leftarrow z \\
& \text { 2. setHeightFromSubtrees }(z) \text {, setHeightFromSubtrees }(y) \\
& \text { 3. return } y / / \text { returns new root of subtree }
\end{aligned}
$$

Why do we call this a rotation?

Left Rotation

Symmetrically, this is a left rotation on node z :

Again, only two links need to be changed and two heights updated. Useful to fix right-right imbalance.

Double Right Rotation

This is a double right rotation on node z :

First, a left rotation at y.

Double Right Rotation

This is a double right rotation on node z :

First, a left rotation at y.
Second, a right rotation at z.

Double Left Rotation

Symmetrically, there is a double left rotation on node z :

First, a right rotation at y.
Second, a left rotation at z.

Fixing a slightly-unbalanced AVL tree

```
restructure(x,y,z)
node }x\mathrm{ has parent }y\mathrm{ and grandparent }
    1. case
    (2): : // Right rotation
        return rotate-right(z)
```



```
: // Double-right rotation z.left \(\leftarrow\) rotate-left \((y)\) return rotate-right \((z)\)
(2): : // Double-left rotation z.right \(\leftarrow\) rotate-right \((y)\) return rotate-left( \(z\) )
(2): : // Left rotation return rotate-left( \(z\) )
```

Rule: The middle key of x, y, z becomes the new root.

AVL Insertion Example revisited

Example: AVL::insert(8)

AVL Insertion Example revisited

Example: AVL::insert(8)

AVL Insertion: Second example

Example: AVL::insert(45)

AVL Deletion

Remove the key k with BST::delete.
Find node where structural change happened.
(This is not necessarily near the node that had k.)
Go back up to root, update heights, and rotate if needed.

```
AVL::delete(k)
1. }z\leftarrowBST::delete(k
2. // Assume z is the parent of the BST node that was removed
3. while (z is not NIL)
4. if (|z.left.height - z.right.height }|>1)\mathrm{ then
5. Let }y\mathrm{ be taller child of z
6. Let }x\mathrm{ be taller child of y (break ties to prefer single rotation)
z \leftarrow r e s t r u c t u r e ( x , y , z )
8. // Always continue up the path and fix if needed.
9. setHeightFromSubtrees(z)
10. }\quadz\leftarrowz\mathrm{ .parent
```


AVL Deletion Example

Example: AVL::delete(22)

AVL Deletion Example

Important: Ties must be broken to prefer single rotation.
Consider again the above example. If we applied double-rotation:

AVL Deletion Example

Important: Ties must be broken to prefer single rotation.
Consider again the above example. If we applied double-rotation:

Resulting tree is not an AVL-tree.

AVL Tree Operations Runtime

search: Just like in BSTs, costs Θ (height)
insert: BST::insert, then check \& update along path to new leaf

- total cost Θ (height)
- restructure restores the height of the subtree to what it was,
- so restructure will be called at most once.
delete: BST::delete, then check \& update along path to deleted node
- total cost Θ (height)
- restructure may be called Θ (height) times.

Worst-case cost for all operations is $\Theta($ height $)=\Theta(\log n)$.
But in practice, the constant is quite large.

