#### CS 240 – Data Structures and Data Management

#### Module 7: Dictionaries via Hashing

#### A. Hunt A. Jamshidpey O. Veksler Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2023

version 2023-03-09 09:06

## Outline



#### Dictionaries via Hashing

- Hashing Introduction
- Hashing with Chaining
- Probe Sequences
- Cuckoo hashing
- Hash Function Strategies

### Outline



#### Dictionaries via Hashing

- Hashing Introduction
- Hashing with Chaining
- Probe Sequences
- Cuckoo hashing
- Hash Function Strategies

#### Direct Addressing

**Special situation:** For a known  $M \in \mathbb{N}$ , every key k is an integer with  $0 \le k < M$ .

We can then implement a dictionary easily: Use an array A of size M that stores (k, v) via  $A[k] \leftarrow v$ .



- *search*(*k*): Check whether *A*[*k*] is NIL
- insert(k, v):  $A[k] \leftarrow v$
- delete(k):  $A[k] \leftarrow \text{NIL}$

## Direct Addressing

**Special situation:** For a known  $M \in \mathbb{N}$ , every key k is an integer with  $0 \le k < M$ .

We can then implement a dictionary easily: Use an array A of size M that stores (k, v) via  $A[k] \leftarrow v$ .



- *search*(*k*): Check whether *A*[*k*] is NIL
- insert(k, v):  $A[k] \leftarrow v$
- delete(k):  $A[k] \leftarrow \text{NIL}$

Each operation is  $\Theta(1)$ . Total space is  $\Theta(M)$ .

What sorting algorithm does this remind you of?

## Direct Addressing

**Special situation:** For a known  $M \in \mathbb{N}$ , every key k is an integer with  $0 \le k < M$ .

We can then implement a dictionary easily: Use an array A of size M that stores (k, v) via  $A[k] \leftarrow v$ .



- *search*(*k*): Check whether *A*[*k*] is NIL
- insert(k, v):  $A[k] \leftarrow v$
- delete(k):  $A[k] \leftarrow \text{NIL}$

Each operation is  $\Theta(1)$ . Total space is  $\Theta(M)$ .

What sorting algorithm does this remind you of? *Bucket Sort* 

# Hashing

Two disadvantages of direct addressing:

- It cannot be used if the keys are not integers.
- It wastes space if M is unknown or  $n \ll M$ .

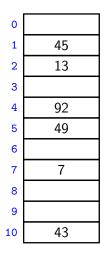
**Hashing idea:** Map (arbitrary) keys to integers in range  $\{0, \ldots, M-1\}$  and then use direct addressing.

Details:

- Assumption: We know that all keys come from some universe U. (Typically U = non-negative integers, sometimes |U| finite.)
- We design a hash function h : U → {0, 1, ..., M − 1}.
   (Commonly used: h(k) = k mod M. We will see other choices later.)
- Store dictionary in hash table, i.e., an array T of size M.
- An item with key k should ideally be stored in **slot** h(k), i.e., at T[h(k)].

#### Hashing example

 $U = \mathbb{N}, M = 11, \qquad h(k) = k \mod 11.$ The hash table stores keys 7, 13, 43, 45, 49, 92. (Values are not shown).

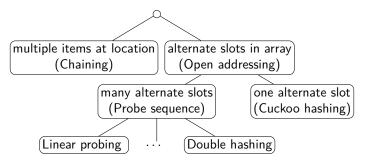


#### Collisions

- Generally hash function *h* is not injective, so many keys can map to the same integer.
  - For example, h(46) = 2 = h(13) if  $h(k) = k \mod 11$ .
- We get collisions: we want to insert (k, v) into the table, but T[h(k)] is already occupied.

#### Collisions

- Generally hash function *h* is not injective, so many keys can map to the same integer.
  - For example, h(46) = 2 = h(13) if  $h(k) = k \mod 11$ .
- We get collisions: we want to insert (k, v) into the table, but T[h(k)] is already occupied.
- There are many strategies to resolve collisions:



#### Outline



- Hashing Introduction
- Hashing with Chaining
- Probe Sequences
- Cuckoo hashing
- Hash Function Strategies

## Hashing with Chaining

Simplest collision-resolution strategy: Each slot stores a **bucket** containing 0 or more KVPs.

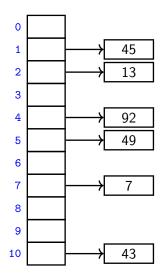
- A bucket could be implemented by any dictionary realization (even another hash table!).
- The simplest approach is to use unsorted linked lists for buckets. This is called collision resolution by **chaining**.

## Hashing with Chaining

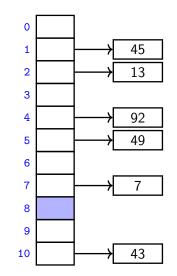
Simplest collision-resolution strategy: Each slot stores a **bucket** containing 0 or more KVPs.

- A bucket could be implemented by any dictionary realization (even another hash table!).
- The simplest approach is to use unsorted linked lists for buckets. This is called collision resolution by **chaining**.
- search(k): Look for key k in the list at T[h(k)].
   Apply MTF-heuristic!
- insert(k, v): Add (k, v) to the front of the list at T[h(k)].
- *delete*(*k*): Perform a search, then delete from the linked list.

 $M = 11, \qquad h(k) = k \bmod 11$ 



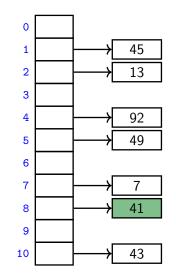
 $M = 11, \qquad h(k) = k \bmod 11$ 



$$h(41) = 8$$

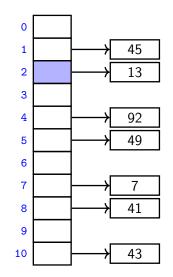
CS240 – Module 7

 $M = 11, \qquad h(k) = k \bmod 11$ 



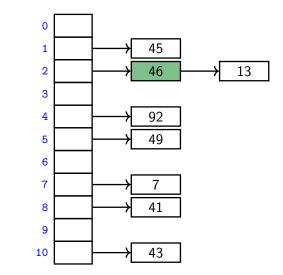
$$h(41) = 8$$

$$M = 11, \qquad h(k) = k \bmod 11$$



$$h(46) = 2$$

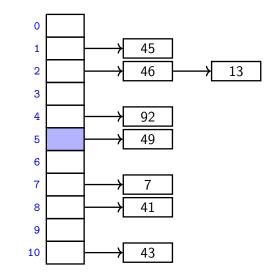
 $M = 11, \qquad h(k) = k \bmod 11$ 



$$h(46) = 2$$

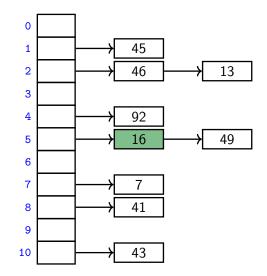
CS240 – Module 7

 $M = 11, \qquad h(k) = k \bmod 11$ 



h(16) = 5

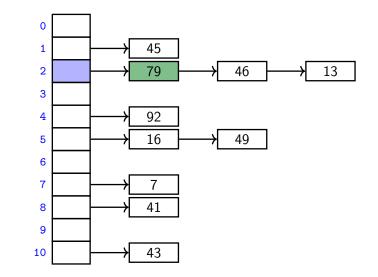
 $M = 11, \qquad h(k) = k \bmod 11$ 



$$h(16) = 5$$

CS240 – Module 7

 $M = 11, \qquad h(k) = k \bmod 11$ 



$$h(79) = 2$$

CS240 – Module 7

**Run-times:** *insert* takes time  $\Theta(1)$ .

search and delete have run-time  $\Theta(1 + \text{size of bucket } T[h(k)])$ .

- The *average* bucket-size is <sup>n</sup>/<sub>M</sub> =: α.
   (α is also called the load factor.)
- However, this does not imply that the *average-case* cost of *search* and *delete* is Θ(1 + α).
  (If all keys hash to the same slot, then the average bucket-size is still α, but the operations take time Θ(n) on average.)
- We need some assumptions on the hash-functions and the keys!

- To analyze what happens 'on average', switch to randomized hashing.
- How can we randomize?

- To analyze what happens 'on average', switch to randomized hashing.
- How can we randomize? Assume that the *hash-function* is chosen randomly.
- **Uniform Hashing Assumption**: Any possible hash-function is equally likely to be chosen as hash-function.

(This is not at all realistic, but the assumption makes analysis possible.)

- To analyze what happens 'on average', switch to randomized hashing.
- How can we randomize? Assume that the *hash-function* is chosen randomly.
- **Uniform Hashing Assumption**: Any possible hash-function is equally likely to be chosen as hash-function.

(This is not at all realistic, but the assumption makes analysis possible.)

• Can show:

• 
$$P(h(k) = i) = \frac{1}{M}$$
 for any key k and slot i,

Hash-values of any two keys are independent of each other.

- To analyze what happens 'on average', switch to randomized hashing.
- How can we randomize? Assume that the *hash-function* is chosen randomly.
- **Uniform Hashing Assumption**: Any possible hash-function is equally likely to be chosen as hash-function.

(This is not at all realistic, but the assumption makes analysis possible.)

• Can show:

• 
$$P(h(k) = i) = \frac{1}{M}$$
 for any key k and slot i,

- Hash-values of any two keys are independent of each other.
- Under this assumption, each key in dictionary is expected to collide with  $\frac{n-1}{M}$  other keys and the expected cost of *search* and *delete* is hence  $\Theta(1 + \alpha)$ .

#### Load factor and re-hashing

- For all collision resolution strategies, the run-time evaluation is done in terms of the *load factor*  $\alpha = n/M$ .
- We keep the load factor small by **rehashing** when needed:
  - Keep track of n and M throughout operations
  - If α gets too large, create new (twice as big) hash-table, new hash-function(s) and re-insert all items in the new table.
- Rehashing costs  $\Theta(M + n)$  but happens rarely enough that we can ignore this term when amortizing over all operations.
- We should also re-hash when α gets too small, so that M ∈ Θ(n) throughout, and the space is always Θ(n).

**Summary:** If we maintain  $\alpha \in \Theta(1)$ , then (under the uniform hashing assumption) the expected cost for hashing with chaining is O(1) and the space is  $\Theta(n)$ .

### Outline

#### Dictionaries via Hashing

- Hashing Introduction
- Hashing with Chaining

#### • Probe Sequences

- Cuckoo hashing
- Hash Function Strategies

## Open addressing

**Main idea**: Avoid the links needed for chaining by permitting only one item per slot, but allowing a key k to be in multiple slots.

search and insert follow a **probe sequence** of possible locations for key k:  $\langle h(k,0), h(k,1), h(k,2), \ldots \rangle$  until an empty spot is found.

*delete* becomes problematic:

- Cannot leave an empty spot behind; the next search might otherwise not go far enough.
- Idea 1: Move later items in the probe sequence forward.
- Idea 2: lazy deletion: Mark spot as *deleted* (rather than NIL) and continue searching past deleted spots.

# Open addressing

**Main idea**: Avoid the links needed for chaining by permitting only one item per slot, but allowing a key k to be in multiple slots.

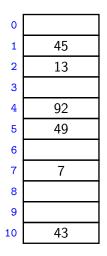
search and insert follow a **probe sequence** of possible locations for key k:  $\langle h(k,0), h(k,1), h(k,2), \ldots \rangle$  until an empty spot is found.

*delete* becomes problematic:

- Cannot leave an empty spot behind; the next search might otherwise not go far enough.
- Idea 1: Move later items in the probe sequence forward.
- Idea 2: lazy deletion: Mark spot as *deleted* (rather than NIL) and continue searching past deleted spots.

Simplest method for open addressing: *linear probing*  $h(k,i) = (h(k) + i) \mod M$ , for some hash function h.

$$M = 11,$$
  $h(k) = k \mod 11,$   $h(k, i) = (h(k) + i) \mod 11.$ 



$$M = 11,$$
  $h(k) = k \mod 11,$   $h(k, i) = (h(k) + i) \mod 11.$ 

$$h(41, 0) = 8$$

$$M = 11,$$
  $h(k) = k \mod 11,$   $h(k, i) = (h(k) + i) \mod 11.$ 

insert(84)

$$h(84, 0) = 7$$

$$M = 11,$$
  $h(k) = k \mod 11,$   $h(k, i) = (h(k) + i) \mod 11.$ 

$$h(84, 1) = 8$$

$$M = 11,$$
  $h(k) = k \mod 11,$   $h(k, i) = (h(k) + i) \mod 11.$ 

insert(84)

$$h(84, 2) = 9$$

$$M = 11,$$
  $h(k) = k \mod 11,$   $h(k, i) = (h(k) + i) \mod 11.$ 

insert(20)

$$h(20,0) = 9$$

$$M = 11,$$
  $h(k) = k \mod 11,$   $h(k, i) = (h(k) + i) \mod 11.$ 

$$h(20, 1) = 10$$

$$M = 11,$$
  $h(k) = k \mod 11,$   $h(k, i) = (h(k) + i) \mod 11.$ 

insert(20)

$$h(20,2) = 0$$

$$M = 11,$$
  $h(k) = k \mod 11,$   $h(k, i) = (h(k) + i) \mod 11.$ 

$$h(43,0) = 10$$

$$M = 11,$$
  $h(k) = k \mod 11,$   $h(k, i) = (h(k) + i) \mod 11.$ 

$$h(63,0) = 8$$

$$M = 11,$$
  $h(k) = k \mod 11,$   $h(k, i) = (h(k) + i) \mod 11.$ 

$$h(63,1) = 9$$

$$M = 11,$$
  $h(k) = k \mod 11,$   $h(k, i) = (h(k) + i) \mod 11.$ 

$$h(63, 2) = 10$$

$$M = 11,$$
  $h(k) = k \mod 11,$   $h(k, i) = (h(k) + i) \mod 11.$ 

$$h(63,3) = 0$$

$$M = 11,$$
  $h(k) = k \mod 11,$   $h(k, i) = (h(k) + i) \mod 11.$ 

$$h(63, 4) = 1$$

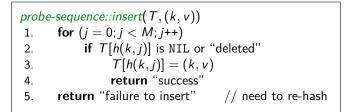
$$M = 11,$$
  $h(k) = k \mod 11,$   $h(k, i) = (h(k) + i) \mod 11.$ 

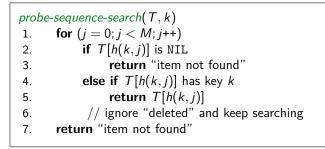
$$h(63,5) = 2$$

$$M = 11,$$
  $h(k) = k \mod 11,$   $h(k, i) = (h(k) + i) \mod 11.$ 

$$h(63, 6) = 3$$
  
not found

#### Probe sequence operations





#### Independent hash functions

- Some hashing methods require *two* hash functions  $h_0, h_1$ .
- These hash functions should be *independent* in the sense that the random variables  $P(h_0(k) = i)$  and  $P(h_1(k) = j)$  are independent.
- Using two modular hash-functions may often lead to dependencies.

#### Independent hash functions

- Some hashing methods require *two* hash functions  $h_0, h_1$ .
- These hash functions should be *independent* in the sense that the random variables  $P(h_0(k) = i)$  and  $P(h_1(k) = j)$  are independent.
- Using two modular hash-functions may often lead to dependencies.
- Better idea: Use *multiplication method* for second hash function:  $h(k) = \lfloor M(kA - \lfloor kA \rfloor) \rfloor,$ 
  - ► *A* is some floating-point number with 0 < *A* < 1
  - ▶  $kA \lfloor kA \rfloor$  computes fractional part of kA, which is in [0, 1)
  - ▶ Multiply with *M* to get floating-point number in [0, *M*)
  - Round down to get integer in  $\{0, \ldots, M-1\}$

#### Independent hash functions

- Some hashing methods require *two* hash functions  $h_0, h_1$ .
- These hash functions should be *independent* in the sense that the random variables  $P(h_0(k) = i)$  and  $P(h_1(k) = j)$  are independent.
- Using two modular hash-functions may often lead to dependencies.
- Better idea: Use *multiplication method* for second hash function:  $h(k) = \lfloor M(kA - \lfloor kA \rfloor) \rfloor$ ,
  - A is some floating-point number with 0 < A < 1
  - ▶  $kA \lfloor kA \rfloor$  computes fractional part of kA, which is in [0, 1)
  - Multiply with M to get floating-point number in [0, M)
  - Round down to get integer in  $\{0, \ldots, M-1\}$
- Some observations/suggestions:
  - Multiplying with A is used to scramble the keys.
  - Good scrambling is achieved with  $A = \varphi = \frac{\sqrt{5}-1}{2} \approx 0.618033988749...$
  - We should use at least  $\log |U| + \log |M|$  bits of A.

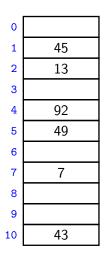
## Double Hashing

- Assume we have two hash independent functions  $h_0, h_1$ .
- Assume further that h<sub>1</sub>(k) ≠ 0 and that h<sub>1</sub>(k) is relative prime with the table-size M for all keys k.
  - Choose M prime.
  - Modify standard hash-functions to ensure h<sub>1</sub>(k) ≠ 0 E.g. modified multiplication method: h(k) = 1 + ⌊(M−1)(kA−⌊kA⌋)⌋
- Double hashing: open addressing with probe sequence

$$h(k,i) = (h_0(k) + i \cdot h_1(k)) \mod M$$

• *search*, *insert*, *delete* work just like for linear probing, but with this different probe sequence.

M = 11,  $h_0(k) = k \mod 11,$   $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ 



$$M = 11, \qquad h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$$

insert(41)

$$h_0(41) = 8$$
  
 $h(41, 0) = 8$ 

$$M = 11,$$
  $h_0(k) = k \mod 11,$   $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ 

insert(194)

$$h_0(194) = 7$$

$$h(194, 0) = 7$$

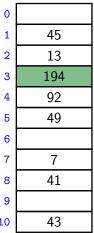
$$M = 11,$$
  $h_0(k) = k \mod 11,$   $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ 

insert(194)  $h_0(194) = 7$ h(194, 0) = 7 $h_1(194) = 9$ h(194,1) = 5

| 45 |  |  |  |
|----|--|--|--|
| 13 |  |  |  |
|    |  |  |  |
| 92 |  |  |  |
| 49 |  |  |  |
|    |  |  |  |
| 7  |  |  |  |
| 41 |  |  |  |
|    |  |  |  |
| 43 |  |  |  |
|    |  |  |  |

$$M = 11,$$
  $h_0(k) = k \mod 11,$   $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$ 

1 insert(194) 2 3  $h_0(194) = 7$ 4 h(194, 0) = 75  $h_1(194) = 9$ 6 7 h(194, 1) = 58 h(194, 2) = 39 10



## Outline

#### Dictionaries via Hashing

- Hashing Introduction
- Hashing with Chaining
- Probe Sequences
- Cuckoo hashing
- Hash Function Strategies

# Cuckoo hashing

We use two independent hash functions  $h_0$ ,  $h_1$  and two tables  $T_0$ ,  $T_1$ .

**Main idea:** An item with key k can only be at  $T_0[h_0(k)]$  or  $T_1[h_1(k)]$ .

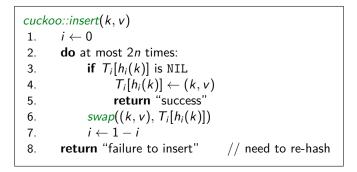
• search and delete then take constant time.

insert always initially puts a new item into T<sub>0</sub>[h<sub>0</sub>(k)]
 If T<sub>0</sub>[h<sub>0</sub>(k)] is occupied: "kick out" the other item, which we then attempt to re-insert into its alternate position T<sub>1</sub>[h<sub>1</sub>(k)]
 This may lead to a loop of "kicking out". We detect this by aborting after too many attempts.

In case of failure: rehash with a larger M and new hash functions.

*insert* may be slow, but is expected to be constant time if the load factor is small enough.

# Cuckoo hashing insertion

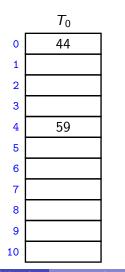


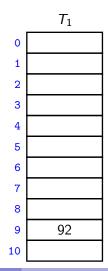
After 2n iterations, there definitely was a loop in the "kicking out" sequence (why?)

In practice, one would stop the iterations much earlier already.

Cuckoo hashing example

$$M = 11,$$
  $h_0(k) = k \mod 11,$   $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$ 





Hunt, Jamshidpey, Veksler (CS-UW)

Cuckoo hashing example  $h_0(k) = k \mod 11,$   $h_1(k) = |11(\varphi k - |\varphi k|)|$ M = 11,insert(51)  $T_0$  $T_1$ i = 0k = 51 $h_0(k) = 7$  $h_1(k) = 5$ 

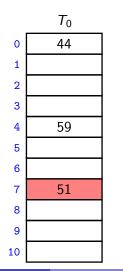
Hunt, Jamshidpey, Veksler (CS-UW)

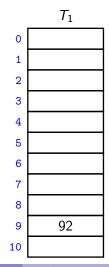
Cuckoo hashing example  $h_0(k) = k \mod 11,$   $h_1(k) = |11(\varphi k - |\varphi k|)|$ M = 11,insert(51)  $T_0$  $T_1$ i = 0k = 51 $h_0(k) = 7$  $h_1(k) = 5$ 

Cuckoo hashing example  $M = 11, \quad h_0(k) = k \mod 11, \quad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$ 

insert(95)

$$i = 0$$
  
 $k = 95$   
 $h_0(k) = 7$   
 $h_1(k) = 7$ 





Cuckoo hashing example  $h_0(k) = k \mod 11,$   $h_1(k) = |11(\varphi k - |\varphi k|)|$ M = 11,insert(95)  $T_0$  $T_1$ i = 1k = 51 $h_0(k)=7$  $h_1(k) = 5$ 

Hunt, Jamshidpey, Veksler (CS-UW)

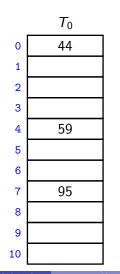
CS240 – Module

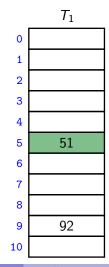
Winter 2023

Cuckoo hashing example M = 11,  $h_0(k) = k \mod 11$ ,  $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$ 

insert(95)

$$k = 1$$
  
 $k = 51$   
 $h_0(k) = 7$   
 $h_1(k) = 5$ 





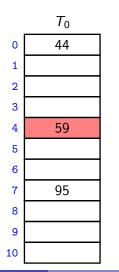
Cuckoo hashing example

$$M = 11,$$
  $h_0(k) = k \mod 11,$   $h_0(k) = k \mod 11,$ 

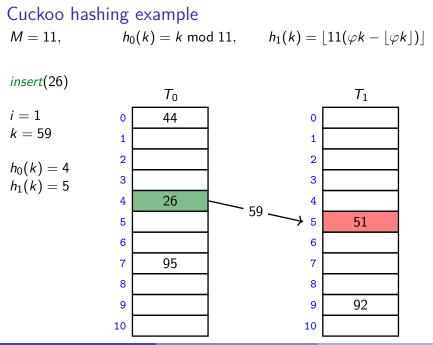
$$h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

insert(26)

$$i = 0$$
  
 $k = 26$   
 $h_0(k) = 4$   
 $h_1(k) = 0$ 

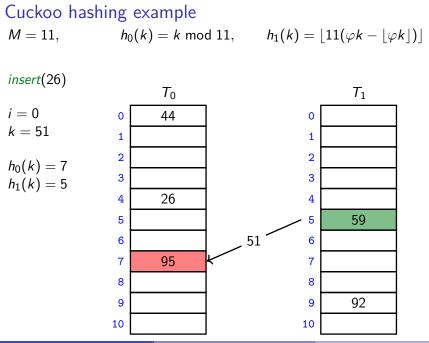






Hunt, Jamshidpey, Veksler (CS-UW)

CS240 - Module



Hunt, Jamshidpey, Veksler (CS-UW)

CS240 - Module

Winter 2023

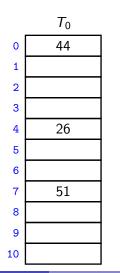
Cuckoo hashing example  $h_0(k) = k \mod 11,$   $h_1(k) = |11(\varphi k - |\varphi k|)|$ M = 11,insert(26)  $T_0$  $T_1$ i = 1k = 95 $h_0(k) = 4$  $h_1(k) = 7$ 

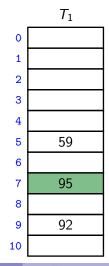
Hunt, Jamshidpey, Veksler (CS-UW)

Cuckoo hashing example  $M = 11, \quad h_0(k) = k \mod 11, \quad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$ 

insert(26)

$$k = 1$$
  
 $k = 95$   
 $h_0(k) = 4$   
 $h_1(k) = 7$ 



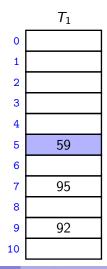


Cuckoo hashing example M = 11,  $h_0(k) = k \mod 11$ ,  $h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$ 

search(59)

 $h_0(59) = 4$ 

 $h_1(59) = 5$ 

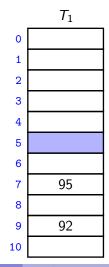


Cuckoo hashing example M = 11,  $h_0(k) = k \mod 11$ ,  $h_1(k) = |11(\varphi k - |\varphi k|)|$ 

delete(59)

 $h_0(59) = 4$ 

 $h_1(59) = 5$ 



Hunt, Jamshidpey, Veksler (CS-UW)

CS240 – Module 7

### Cuckoo hashing discussions

- The two hash-tables need not be of the same size.
- Load factor  $\alpha = n/(\text{size of } T_0 + \text{size of } T_1)$
- One can argue: If the load factor  $\alpha$  is small enough then insertion has O(1) expected run-time.
- This crucially requires  $\alpha < \frac{1}{2}$ .

## Cuckoo hashing discussions

- The two hash-tables need not be of the same size.
- Load factor  $\alpha = n/(\text{size of } T_0 + \text{size of } T_1)$
- One can argue: If the load factor  $\alpha$  is small enough then insertion has O(1) expected run-time.
- This crucially requires  $\alpha < \frac{1}{2}$ .

There are many possible variations:

- The two hash-tables could be combined into one.
- Be more flexible when inserting: Always consider both possible positions.
- Use k > 2 allowed locations (i.e., k hash-functions).

# Complexity of open addressing strategies

For any open addressing scheme, we *must* have  $\alpha < 1$  (why?). Cuckoo hashing requires  $\alpha < 1/2$ .

| Expected $\#$ probes $\leq$ | search<br>(unsuccessful)    | insert                         | search<br>(successful)      |
|-----------------------------|-----------------------------|--------------------------------|-----------------------------|
| Linear Probing              | $\frac{1}{(1-\alpha)^2}$    | $\frac{1}{(1-\alpha)^2}$       | $\frac{1}{1-lpha}$          |
|                             |                             |                                | (on avg. over keys)         |
| Double Hashing              | $\frac{1}{1-\alpha} + o(1)$ | $\frac{1}{1-\alpha} + o(1)$    | $\frac{1}{1-\alpha} + o(1)$ |
| Cuckoo Hashing              | 1<br>(worst-case)           | $\frac{\alpha}{(1-2\alpha)^2}$ | 1<br>(worst-case)           |

**Summary:** All operations have O(1) expected run-time if hash-function chosen uniformly and  $\alpha$  is kept sufficiently small.

But for fixed hash-function the worst-case run-time is (usually)  $\Theta(n)$ .

# Outline

#### Dictionaries via Hashing

- Hashing Introduction
- Hashing with Chaining
- Probe Sequences
- Cuckoo hashing
- Hash Function Strategies

# Choosing a good hash function

- Satisfying the uniform hashing assumption is impossible: There are too many hash functions; we would not know how to look up h(k).
- We need to compromise:
  - Choose a hash-function that is easy to compute.
  - But aim for  $P(h(k) = i) = \frac{1}{M}$  w.r.t. key-distribution.

# Choosing a good hash function

- Satisfying the uniform hashing assumption is impossible: There are too many hash functions; we would not know how to look up h(k).
- We need to compromise:
  - Choose a hash-function that is easy to compute.
  - But aim for  $P(h(k) = i) = \frac{1}{M}$  w.r.t. key-distribution.
- If all keys are used equally often, then this is easy. But in practice keys are not used equally often.
- We can get good performance by choosing a hash-function that is
  - unrelated to any possible patterns in the data, and
  - depends on all parts of the key.
- We saw two basic methods for integer keys:
  - ► Modular method: h(k) = k mod M. We should choose M to be a prime.
  - ► Multiplicative method: h(k) = [M(kA [kA])], for some constant floating-point number A with 0 < A < 1.</p>

## Carter-Wegman's universal hashing

Even better: Randomization that uses easy-to-compute hash-functions.

- Requires: all keys are in  $\{0, \ldots, p-1\}$  for some (big) prime p.
- Choose M < p arbitrarily, power of 2 is ok.
- Choose two *random* numbers a, b in  $\{0, \dots p-1\}$ ,  $a \neq 0$
- Use as hash-function

 $h(k) = ((ak + b) \bmod p) \bmod M$ 

# Carter-Wegman's universal hashing

Even better: Randomization that uses easy-to-compute hash-functions.

- Requires: all keys are in  $\{0, \ldots, p-1\}$  for some (big) prime p.
- Choose M < p arbitrarily, power of 2 is ok.
- Choose two *random* numbers a, b in  $\{0, \dots p-1\}$ ,  $a \neq 0$
- Use as hash-function

$$h(k) = ((ak + b) \bmod p) \bmod M$$

- Clearly h(k) can be computed in O(1) time.
- Choosing h in this way does not satisfy uniform hashing assumption, but we can prove that two keys collide with probability at most <sup>1</sup>/<sub>M</sub>.
- This is enough to prove the expected run-time bounds for chaining.

23 / 25

#### Multi-dimensional Data

What if the keys are multi-dimensional, such as strings in  $\Sigma^*$ ?

Standard approach is to *flatten* string w to integer  $f(w) \in \mathbb{N}$ , e.g.

$$\begin{array}{rcl} A \cdot P \cdot P \cdot L \cdot E & \rightarrow & (65, 80, 80, 76, 69) & (\mathsf{ASCII}) \\ & \rightarrow & 65R^4 + 80R^3 + 80R^2 + 76R^1 + 69R^0 \\ & & (\text{for some radix } R, \text{ e.g. } R = 255) \end{array}$$

We combine this with a modular hash function:  $h(w) = f(w) \mod M$ 

To compute this in O(|w|) time without overflow, use Horner's rule and apply mod early. For example, h(APPLE) is

$$\left(\left(\left(\left(\left((65R+80) \mod M\right)R+80\right) \mod M\right)R+76\right) \mod M\right)R+69\right) \mod M$$

#### Hashing vs. Balanced Search Trees

#### Advantages of Balanced Search Trees

- $O(\log n)$  worst-case operation cost
- Does not require any assumptions, special functions, or known properties of input distribution
- Predictable space usage (exactly *n* nodes)
- Never need to rebuild the entire structure
- Supports ordered dictionary operations (rank, select etc.)

#### Advantages of Hash Tables

- O(1) operation cost (if hash-function random and load factor small)
- We can choose space-time tradeoff via load factor
- Cuckoo hashing achieves O(1) worst-case for search & delete