
Tutorial 02 - Recurrences, trees, amortized analysis

CS 240E Winter 2023

University of Waterloo

Monday, January 23, 2023

1. Recurrence relation.
Consider the following recursion: T (0) = 0,

T (n) = n+ 1 + min
0≤i≤n−1

{T (i) + T (n− i− 1)} for n ≥ 1.

Argue T (n) ∈ Ω(log n) by showing T (n) ≥ (n+ 1) log(n+ 1).

Hint: show that f(x) = x log x is convex.

2. Binary lifting.
We are given a tree on n nodes (labelled 0, . . . , n − 1) where node 0 is
the root. The tree is represented with the array parent , where parent [i]
denotes the parent of i (and parent [0] = −1).

0

9

2

4 1

5

6 3

7 8

parent : -1

0

2

1

9

2

0

3

2

4

9

5

0

6

3

7

3

8

0

9

Figure 1: Example tree and corresponding array parent .

The k-th ancestor of node x in a rooted tree is the node we reach by
moving k steps from x towards the root. In Figure 1, the 2-nd ancestor
of 1 is 9.

Our goal is to answer many queries of the form: given x and k, find the
k-th ancestor of x.

1



(a) Suppose we have a black-box anc(x, i) that returns 2i-th ancestor of
x in constant time.

Give an algorithm to find the k-th ancestor of x in O(log k) time.

(b) Define the two-dimensional array of integers

anc[0..n− 1][0..⌈lg n⌉ − 1],

with the intended meaning:

anc[x][i] = 2i-th ancestor of x.

Suppose that the tree satisfies the min-heap order property

Explain how to compute this array in O(n log n) time.

(c) In fact, we sometimes need less than log n entries in the second
dimension of the array anc. For a fixed tree T , give an exact tight
bound on the size of the second dimension of anc.

3. Amortized analysis.
We are given a binary search tree on n nodes, storing n distinct keys.
We can list all keys in increasing order using in-order traversal in time
linear in n.

The operation successor(x) returns the in-order successor of x in the
tree, which is the node z with x.key < z.key and no other keys are stored
in between (or null if such z does not exist), in Θ(height of the tree)
time.

Consider the algorithm to print all keys in the tree T in increasing order:

x = T.get_min()

print(x.key)

while(T.successor(x) is not null):

x = T.successor(x)

print(x.key)

(a) Give an asymptotic bound on the worst-case runtime of this algo-
rithm, if the height of T is in Θ(log n).

(b) Show that the amortized runtime of successor is O(1) (and therefore
the runtime of the algorithm is Θ(n)).

2


