Tutorial 02 - Recurrences, trees, amortized analysis

CS 240E Winter 2023
University of Waterloo
Monday, January 23, 2023

1. Recurrence relation.

Consider the following recursion: $T(0)=0$,

$$
T(n)=n+1+\min _{0 \leq i \leq n-1}\{T(i)+T(n-i-1)\} \quad \text { for } n \geq 1 .
$$

Argue $T(n) \in \Omega(\log n)$ by showing $T(n) \geq(n+1) \log (n+1)$.
Hint: show that $f(x)=x \log x$ is convex.

2. Binary lifting.

We are given a tree on n nodes (labelled $0, \ldots, n-1$) where node 0 is the root. The tree is represented with the array parent, where parent $[i]$ denotes the parent of i (and parent $[0]=-1$).

	0	1	2	3	4	5	6	7	8	9	
parent:	-1	2	9	0	2	9	0	3	3	0	

Figure 1: Example tree and corresponding array parent.
The k-th ancestor of node x in a rooted tree is the node we reach by moving k steps from x towards the root. In Figure 1, the 2-nd ancestor of 1 is 9 .
Our goal is to answer many queries of the form: given x and k, find the k-th ancestor of x.
(a) Suppose we have a black-box $\operatorname{anc}(x, i)$ that returns 2^{i}-th ancestor of x in constant time.
Give an algorithm to find the k-th ancestor of x in $O(\log k)$ time.
(b) Define the two-dimensional array of integers

$$
\operatorname{anc}[0 . . n-1][0 . .\lceil\lg n\rceil-1] \text {, }
$$

with the intended meaning:

$$
\operatorname{anc}[x][i]=2^{i} \text {-th ancestor of } x .
$$

Suppose that the tree satisfies the min-heap order property Explain how to compute this array in $O(n \log n)$ time.
(c) In fact, we sometimes need less than $\log n$ entries in the second dimension of the array anc. For a fixed tree T, give an exact tight bound on the size of the second dimension of anc.

3. Amortized analysis.

We are given a binary search tree on n nodes, storing n distinct keys. We can list all keys in increasing order using in-order traversal in time linear in n.
The operation successor (x) returns the in-order successor of x in the tree, which is the node z with $x . k e y<z . k e y$ and no other keys are stored in between (or null if such z does not exist), in Θ (height of the tree) time.

Consider the algorithm to print all keys in the tree T in increasing order:

```
x = T.get_min()
print(x.key)
while(T.successor(x) is not null):
    x = T.successor(x)
    print(x.key)
```

(a) Give an asymptotic bound on the worst-case runtime of this algorithm, if the height of T is in $\Theta(\log n)$.
(b) Show that the amortized runtime of successor is $O(1)$ (and therefore the runtime of the algorithm is $\Theta(n))$.

