Tutorial 02 - Recurrences, trees, amortized analysis
CS 240E Winter 2023
University of Waterloo
Monday, January 23, 2023

1. Recurrence relation.
Consider the following recursion: 7'(0) = 0,

Tn)=n+14+ min {T@\G)+T(n—i—1)} for n > 1.

0<i<n—1
Argue T'(n) € Q(logn) by showing T'(n) > (n+ 1)log(n + 1).

Hint: show that f(z) = xlogx is convex.

2. Binary lifting.
We are given a tree on n nodes (labelled 0, ...,n — 1) where node 0 is
the root. The tree is represented with the array parent, where parent|i]
denotes the parent of ¢ (and parent[0] = —1).

o 1 2 3 4 5 6 7 8 9
parent: |-1[2]9]o|2[9]0o]3]3]0]

Figure 1: Example tree and corresponding array parent.

The k-th ancestor of node z in a rooted tree is the node we reach by
moving k steps from x towards the root. In Figure 1, the 2-nd ancestor
of 11is 9.

Our goal is to answer many queries of the form: given x and k, find the
k-th ancestor of x.

(a) Suppose we have a black-box anc(z,7) that returns 2'-th ancestor of
x 1n constant time.
Give an algorithm to find the k-th ancestor of = in O(log k) time.

(b) Define the two-dimensional array of integers
anc|0..n — 1][0..[lgn] — 1],
with the intended meaning:
anclz][i] = 2'-th ancestor of z.

Suppose that the tree satisfies the min-heap order property
Explain how to compute this array in O(nlogn) time.

(c) In fact, we sometimes need less than logn entries in the second
dimension of the array anc. For a fixed tree T, give an exact tight
bound on the size of the second dimension of anc.

3. Amortized analysis.
We are given a binary search tree on n nodes, storing n distinct keys.
We can list all keys in increasing order using in-order traversal in time
linear in n.

The operation successor(z) returns the in-order successor of x in the
tree, which is the node z with x.key < z.key and no other keys are stored
in between (or null if such z does not exist), in ©(height of the tree)
time.

Consider the algorithm to print all keys in the tree T" in increasing order:

x = T.get_min()

print (x.key)

while(T.successor(x) is not null):
x = T.successor(x)
print(x.key)

(a) Give an asymptotic bound on the worst-case runtime of this algo-
rithm, if the height of T is in ©(logn).

(b) Show that the amortized runtime of successor is O(1) (and therefore
the runtime of the algorithm is ©(n)).

