
Tutorial 03 - Amortized, expected, and average-case analyses;

sorting

CS 240E Winter 2023

University of Waterloo

Monday, January 30, 2023

1. Amortized analysis.
We are given a binary search tree on n nodes, storing n distinct keys.
We can list all keys in increasing order using in-order traversal in time
linear in n.

The operation successor(x) returns the in-order successor of x in the
tree, which is the node z with x.key < z.key and no other keys are stored
in between (or null if such z does not exist), in Θ(height of the tree)
time.

Consider the algorithm to print all keys in the tree T in increasing order:

x = T.get_min()

print(x.key)

while(T.successor(x) is not null):

x = T.successor(x)

print(x.key)

(a) Give an asymptotic bound on the worst-case runtime of this algo-
rithm, if the height of T is in Θ(log n).

(b) Show that the amortized runtime of successor is O(1) (and therefore
the runtime of the algorithm is Θ(n)).

2. String comparison.
Let A and B be two bitstrings of length n (modelled here as arrays where
each entry is 0 or 1). A string-compare tests whether A is smaller, larger,
or the same as B and works as follows:

Show that the average-case run-time of str-cmp is in O(1). You may use
without proof that

∑
i≥0

i
2i ∈ O(1).

1



Algorithm 1: str-cmp(A,B, n)

1 for (i = 0; i < n; i++) do
2 if A[i] < B[i] then return “A is smaller”
3 if A[i] > B[i] then return “A is bigger”

4 return “They are equal”

3. Average-case vs expected (hiring problem).
Suppose we must hire a new employee. There are n candidates arriving
sequentially, one each day.

It takes I time units to interview a candidate, and it takes H units to
hire them.

We want to have at all times the best possible person for the job. After
interviewing each applicant, if they are better than our current employee,
we hire them immediately (and fire our current employee).

We can compare two candidates in constant time.

hire(cand[1..n]):

curr = dummy candidate // compares worse than anyone

for i = 1..n:

interview cand[i]

if cand[i] is better than curr:

hire cand[i]

curr = cand[i]

Suppose m candidates are hired. Then the worst-case runtime is in
Θ(In+Hm).

We can rank each candidate with a unique number between 1 and n
and use rank [i] to denote the rank of candidate i. We adopt the con-
vention that a higher ranked applicant corresponds to a better qualified
applicant.

Note that the ordered list

⟨rank [1], . . . , rank [n]⟩

is a permutation of the list ⟨1, . . . , n⟩.

2



(a) Describe an instance that achieves the runtime Ω(Hn).

(b) Show that in the average-case we hire a new candidate O(log n)
times.

4. Morris’s probabilistic counting.
With a deterministic b-bit counter, we can only count up to 2b−1. With
probabilistic counting we can count to larger values at the expense of
loss of precision.

We let a counter reading of i represent a count of vi, for 0 ≤ i ≤ 2b − 1.
Initially the counter reads 0, indicating the count of v0 = 0.

The operation increment works on a counter with reading i in a proba-
bilistic manner:

- if i < 2b − 1, increase counter reading with probability

1

vi+1 − vi
,

and leave the counter unchanged otherwise.

- if i = 2b − 1, report overflow.

Note that if we select vi = 1, then the counter is an ordinary determin-
istic counter. More interesting situations arise if vi = 100i, vi = 2i, or
vi = i-th Fibonacci number.

Assume that the probability of an overflow is negligible. Show that the
value represented by the counter after n increment operations is n.

5. Partially Sorted.
Let 0 < ϵ < 1. Suppose that we have an array A of n items such that
the first n − nϵ items are sorted. Describe an O(n) time algorithm to
sort A.

3


