Tutorial 04 - Amortized analysis & dictionaries
CS 240E Winter 2023
University of Waterloo
Monday, February 6, 2023

1. Aggregate analysis. Suppose any sequence of n operations on a data
structure has the property that the ¢-th operation costs ilogs if ¢ is
an exact power of 2, and 1 otherwise. Show the amortized cost per
operation of O(logn).

2. Binary counter. A binary n-bit counter counts upward from zero as
an array n bits (the leftmost bit is least significant). It supports the
operation ncrement, which adds 1 to the counter:

increment (A[0..n-1]):
i=0
while (A[i] !'= 0):
Ali]l =0
++1
Ali] =1

The running time for increment is ©(k), where k is the final value of
variable 4, which is ©(n) in the worst case. Show the amortized cost per
increment of ©(1).

3. Stars. We have a data structure to maintain collection of stars (height-1

trees).
(b) (&)
01020 0101020

Every child knows its parent. It supports three operations:

1



e new-star(x) : creates a new star whose only member is z
e find-star(x) : returns a handle to the root of the star containing x

e merge(x,y) : merges the stars that contain x and y

new-star(x) is implemented in constant worst-case time by simply cre-
ating a new star with x as its only element. Similarly, find-star(z) is
implemented in constant worst-case time by returning x’s parent pointer.

The operation merge(z,y), however, can be slow: it sets the parent
pointer of all elements of y’s star to find-star(x), in time proportional
to the size of y’s star (i.e. the number of element’s in y’s star).

Let n be the number of objects currently stored.

(a) Construct a sequence of ©(n) operations that requires ©(n?) time.

Hence, conclude that the amortized cost of all operations is ©(n).

(b) We may augment this data structure with a size field at the root:
now every root knows the size of its star. Now rather than breaking
ties arbitrarily during merge, we always set the parent pointers of a
smaller star.

Show using the aggregate method that the amortized runtime of all
operations is O(logn).

Hint: argue that any sequence of m new-star, find-star, and merge
operations, n of which are new-star operations take O(m + nlogn)
time.



4. A lower bound. Show that any comparison-based sorting algorithm
uses (nlogn) comparisons in the average case.

5. 2-AVL tree. Let a 2-AVL tree be a binary search tree where for every
node, the difference of heights of its left and right subtree is at most
2. Prove that a 2-AVL tree has height at most 3logn where n is the
number of nodes in the tree.

6. Balanced BST. Recall that a binary search tree is called perfectly bal-
anced if for every node v we have

lv.left.size — v.right.size| <1,

i.e., the size-difference between the left and right is as small as possible.
Show that in any perfectly balanced binary search tree T', the leaves are
only on the bottom two levels.

Hint: First consider the case where n = 2¥ — 1 for some integer k. Then
consider the case where n = 2* for some integer k. Finally for arbitrary
n, let k be the integer with 2¥ < n < 281 In all three cases, what are
the sizes of the subtrees, and hence where are the leaves, relative to k7



