
Tutorial 04 - Amortized analysis & dictionaries

CS 240E Winter 2023

University of Waterloo

Monday, February 6, 2023

1. Aggregate analysis. Suppose any sequence of n operations on a data
structure has the property that the i-th operation costs i log i if i is
an exact power of 2, and 1 otherwise. Show the amortized cost per
operation of O(log n).

2. Binary counter. A binary n-bit counter counts upward from zero as
an array n bits (the leftmost bit is least significant). It supports the
operation increment, which adds 1 to the counter:

increment(A[0..n-1]):

i = 0

while (A[i] != 0):

A[i] = 0

++i

A[i] = 1

The running time for increment is Θ(k), where k is the final value of
variable i, which is Θ(n) in the worst case. Show the amortized cost per
increment of Θ(1).

3. Stars. We have a data structure to maintain collection of stars (height-1
trees).

b

a d c

g

h f i e

Every child knows its parent. It supports three operations:

1

� new-star(x) : creates a new star whose only member is x

� find-star(x) : returns a handle to the root of the star containing x

� merge(x, y) : merges the stars that contain x and y

new-star(x) is implemented in constant worst-case time by simply cre-
ating a new star with x as its only element. Similarly, find-star(x) is
implemented in constant worst-case time by returning x’s parent pointer.

The operation merge(x, y), however, can be slow: it sets the parent
pointer of all elements of y’s star to find-star(x), in time proportional
to the size of y’s star (i.e. the number of element’s in y’s star).

Let n be the number of objects currently stored.

(a) Construct a sequence of Θ(n) operations that requires Θ(n2) time.

Hence, conclude that the amortized cost of all operations is Θ(n).

(b) We may augment this data structure with a size field at the root:
now every root knows the size of its star. Now rather than breaking
ties arbitrarily during merge, we always set the parent pointers of a
smaller star.

Show using the aggregate method that the amortized runtime of all
operations is O(log n).

Hint: argue that any sequence of m new-star, find-star, and merge
operations, n of which are new-star operations take O(m+ n log n)
time.

2

4. A lower bound. Show that any comparison-based sorting algorithm
uses Ω(n log n) comparisons in the average case.

5. 2-AVL tree. Let a 2-AVL tree be a binary search tree where for every
node, the difference of heights of its left and right subtree is at most
2. Prove that a 2-AVL tree has height at most 3 log n where n is the
number of nodes in the tree.

6. Balanced BST. Recall that a binary search tree is called perfectly bal-
anced if for every node v we have

|v.left.size− v.right.size| ≤ 1,

i.e., the size-difference between the left and right is as small as possible.
Show that in any perfectly balanced binary search tree T , the leaves are
only on the bottom two levels.

Hint: First consider the case where n = 2k − 1 for some integer k. Then
consider the case where n = 2k for some integer k. Finally for arbitrary
n, let k be the integer with 2k ≤ n < 2k+1. In all three cases, what are
the sizes of the subtrees, and hence where are the leaves, relative to k?

3

