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1. Nearest smaller elements. Given an array of n integers, give an algorithm to find, for each
element x, the first smaller element that appears to the left of x in the array (or conclude
that no such element exists). Worst-case time and auxiliary space should be in O(n).

For example, for the array [1, 3, 5, 2, 4, 15, 9], the output is,

[null, 1, 3, 1, 2, 4, 4],

since there are no elements smaller than 1 to the left of 1; for 4 the first smaller element to
its left is 2.

2. Fibonacci heaps. The Fibonacci heap is data structure for priority queue operations.
Several of its operations have better amortized running time those of binary and binomial
heaps.

The number of items in the heap(s) at the time of an operation is denoted by n. We also
assume that our heaps are min-oriented, and that all keys are distinct.

Binary heap (worst-case) Fibonacci heap (amortized)

insert Θ(log n) Θ(1)
delete-min Θ(log n) O(log n)
merge Θ(n) Θ(1)
decrease-key Θ(log n) Θ(1)

Table 1: Runtimes for operations on two implementations of a heap.

If we do not need the merge operation, ordinary binary heaps work well.

From the theoretic analysis standpoint, Fibonacci heaps are especially useful when we have
to decrease-key often. Some algorithms for graph problems call decrease-key once per edge:
when a graph has many edges, the Θ(1) amortized time is a big improvement over the Θ(log n)
worst-case time.

A Fibonacci heap is a collection of rooted trees with a min-heap ordering. Every node x
knows its parent and children. The children of x are linked together in a circular, doubly
linked list, which we refer to as the child list of x. Each child y in a child list has pointers
y.left and y.right pointing to the y’s left and right siblings respectively. If y is an only child,
then y .left = y .right = y. We note that siblings may appear in any order in the child list.

We also store the number of children of a node in x.degree (not counting the parent pointer).
Each node also contains a boolean attribute x.mark, which indicates whether x has lost a
child since the last time x was made child of another node. Until we look at decrease-key, we
set all mark attributes to false. This field is primarily used for the decrease-key operation.

1



We access a Fibonacci heap H by a pointer H.min to the minimum node: root of a tree
containing a minimum key. If H is empty, H.min is null.

The roots are linked together using their left and right pointers into a circular, doubly linked
list called the root list. Trees may appear in any order within a root list.

Figure 1: A Fibonacci heap [CLRS].

For a given Fibonacci heap H, we denote by:

� t(H) : the number of trees in the root list

� m(H) : the number of marked nodes in H

Define the potential function,
Φ(H) = t(H) + 2m(H).

(a) Verify that Φ is indeed a potential function.

(b) Compute the potential of the Fibonacci heap in Figure 1.

Define time units so that one time unit is sufficiently large to cover the cost of any constant
time operation we encounter.

Let D(n) be an upper bound on the maximum degree of any node in an n-node Fibonacci
heap. It can be shown that, D(n) ≤ ⌊log n⌋.
The idea behind the operations is to delay work as long as possible.

(c) We implement insert(H,x) by simply adding x to the root list of H in constant time.

insert(H, x):

// pre: x.key initialized

x.deg = 0; x.parent = null; x.child = null; x.mark = false;

insert x into H’s root list

if x.key < H.min.key: H.min = x.key

++H.n
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Show that the amortized cost of insert is constant.

(d) We implement merge by simply concatenating root lists (also in constant time):

merge(H1, H2):

// post: returns a new Fib. heap: H = H1 U H2

H’s root list = (H1’s root list) concatenate (H2’s root list)

H.min = element with smaller key of { H1.min, H2.min }

H.n = H1.n + H2.n

return H

Show that the amortized cost of merge is constant.

(e) delete-min is the operation where the delayed work of consolidating the trees in the root
list finally occurs.

delete_min(H):

// pre: H is not empty

z = H.min

for each child x of z:

moving x to root list of H // update left and right pointers

x.parent = null

remove z from root list of H

if z == z.right:

// no item in root list besides z (after moving z’s children)

H.min = null

else:

consolidate(H)

--H.n

return z

The subroutine consolidate repeatedly executes the following steps until every root in
the root list has a distinct degree value:

i. find two roots x, y with the same degree, and x.key ≤ y.key ;

ii. Link y to x: remove y from root list, make y child of x (incrementing degree of x
and clearing the mark on y).

This procedure is very similar to binomial-heap::make-proper from lecture.

consolidate(H):

n = H.n

// compute log H.n (an upper bound on D(H.n))

for (l = 0; n > 1; n /= 2):

++l

A = array of size l+1, initialized all null

for each node w in the root list of H:

x = w

d = x.degree
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while A[d] != null:

y = A[d] // another root with same degree as x

if x.key > y.key:

swap(x, y)

link(H, y, x) // as above in (ii)

A[d] = null

d++

A[d] = x

H.min = null

for i = 0..l:

if(A[i] != null):

insert A[i] into H’s root list // updating H.min if necessary

Show that the amortized cost of delete-min is O(log n).

Hint: Show that it is in O(D(n)), by first showing that total actual work in extracting
the minimum node is in O(D(n) + t(H)).

3. Binary counter. A binary n-bit counter counts upward from zero as an array n bits (the left-
most bit is least significant). It supports the operation increment, which adds 1 to the counter:

increment(A[0..n-1]):

i = 0

while (A[i] != 0):

A[i] = 0

++i

A[i] = 1

The running time for increment is Θ(k), where k is the final value of variable i, which is Θ(n)
in the worst case. Show the amortized cost per increment of Θ(1).
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