
Tutorial 06
Generating functions, orderings, selection and ordered sets

CS 240E Winter 2023
University of Waterloo

Monday, February 27, 2023

1. Generating functions. Many problems in CS240E have answers represented by a sequence
of numbers

a0, a1, a2, . . .

The generating function A(x) of {an}:

A(x) :=

∞∑
n=0

anx
n,

is data structure for working with {an} implicitly, e.g. through algebraic or functional equa-
tions.

We use generating functions when we want:

� to find an exact formula for an,

� to find a recurrence formula for an,

� to find averages and other statistical properties of an, or

� to find asymptotic behaviour of or approximations to an.

The last point is most useful for the problems that we work with.

Suppose a certain sequence a0, a1, . . . satisfies

an+1 = 2an + 1,

for n ≥ 0; a0 = 0. Since an doubles with every increment in n, we know an ∈ Θ(2n). We will
use generating functions to show this formally; in fact, we will determine an exact formula
for an.

(a) Multiply both sides of the recurrence by xn and sum over all values of n for which the
recurrence is valid, to show that

A(x)

x
= 2A(x) +

1

1− x
.

(b) Using a partial fraction expansion, show that

an = 2n − 1.

(c) With a similar approach, show the Binet’s formula for the n-th Fibonacci number:

fn =
1√
5

[(
1 +

√
5

2

)n

+

(
1−

√
5

2

)n]
.

1



More generally, a sequence {an} that satisfies linear recurrences of the form

c0an + c1an−1 + · · ·+ cran−r = 0

for all n larger than some integer N ≥ r, where each c0, c1, . . . , cr is rational and c0 ̸= 0,
is called a C-finite sequence. It is a remarkable fact established by [de Moivre, 1730] that
C-finite sequences have rational generating functions and vice-versa.

2. Splay trees. Given the following splay tree S, calculate its potential using the potential
function

Φ(i) :=
∑
v∈S

log n(i)
v ,

where n
(i)
v is the number of nodes in the subtree rooted at v after i operations, including v

itself. Insert the key 18. Calculate the new potential. Verify that the difference between the
potential difference is less than 4 log n− 2R+ 2, where R is the number of rotations.

20

10

5 15

12 17

16 19

25

3. Static ordering. Let A be an unordered array with n distinct items k0, ..., kn−1. Give an
asymptotically tight Θ-bound on the expected access cost if you put A in the optimal static
order for the followng probability distributions:

(a) pi =
1
n for 0 ≤ i ≤ n− 1

(b) pi =
1

2i+1 , for 0 ≤ i ≤ n− 2, pn−1 = 1−
∑n−2

i=0 pi =
1

2n−1

4. Dynamic orderings. Consider a linked list with the keys k1, k2, . . . , kn in that order. Give
a sequence of n searches such that the Move-To-Front heuristic uses O(n) comparisons while
the Transpose heuristic uses Ω(n2) comparisons.

5. Selection and ordered sets.1 The set ADT supports the operations:

� add(x) : add x to the set,

� exists(x) : determine whether x is present in the set, and

� delete(x) : delete x from the set.

We will implement an ordered set–whose elements are stored in some order–that will also
support the operations:

1This problem is harder than what we should expect on assignments or exams. It is used to explore new data
structures, develop critical thinking skills, and illustrate the ways of thinking of CS240E.

2



� select(k) : return the k-th element of the set,2

� rank(x) : determine the index that x would have if it were in the set.

The most often used realization that supports these operations efficiently is a balanced tree
that stores the size of each node’s subtree (see A3). We will discuss a new realization called
binary indexed tree, first developing it in the context of sum/update queries on an array.

We are given an array A of n integers. Our goal is to answer queries of the form sum(a, b):
return the sum

b∑
i=a

A[i].

We will use the following array as our running example. For this problem, we will assume
that all arrays are one-indexed to simplify implementation.

A: 1

1

3

2

4

3

8

4

6

5

1

6

4

7

2

8

Figure 1.

(a) Consider the situation when the array is static, i.e. never updated between queries.
Explain how to answer sum queries in constant time after O(n) preprocessing.

A binary indexed tree (also commonly known as Fenwick tree) is a data structure that supports
range sum queries and updates in logarithmic time; and it is easily built in Θ(n log n) time.

Let p(k) denote the largest power of two that divides k. A binary indexed tree is represented
as an array, which we will denote by t, such that

t[k] = sum(k − p(k) + 1, k).

In other words, at index k we store the sum of the values of the original array A, whose length
is p(k) and that ends at index k.

(b) Give the binary indexed tree corresponding to the example array A in Fig. 1.

With a binary indexed tree, any value of sum(1, k) can be computed in O(log n) time, because
the range [1, k] can always be divided into O(log n) ranges whose sums are stored in the tree.
For example,

sum(1, 7) = sum(1, 4) + sum(5, 6) + sum(7, 7).

(c) Suppose we want to update an element of the array. Give an asymptotic bound on the
number of values in the tree t that we must update.

2The selection problem receives as input a set of n items and an integer k with 0 ≤ k ≤ n− 1, and it must return
the item that would be at A[k] if the items were put into an array A in sorted order.

3



For this question, we will assume that we can calculate any value of p(k) in constant time.
Note that this assumption is not realistic; in practice, we can use bit operations:

p(k) = k&− k.

The following functions give implementations of the functions:

� pref (k) : return the prefix sum
∑k

i=1A[i].

pref(k):

s = 0

while(k >= 1):

s += t[k]

k -= p(k)

return s

� change(k, x) : change the array value at position k by x (x could be positive or negative).

change(k, x):

A[k] += x

while(k <= n):

tree[k] += x

k += p(k)

(d) Give tight asymptotic bounds on the time complexity and auxiliary space of these algo-
rithms.

We are now ready to return to our ordered set operations.

(e) Explain how to use a binary indexed tree to support all ordered set operations except for
selection in time logarithmic in n, assuming that all numbers are integers in the range
[1, N ], where N is independent of n.

Hint: suppose the index of an element x in A is x itself, and that A[x] is the number of
elements in A equal to x.

(f) Give an algorithm to support select(k) in O(log n) time.

Hint: one approach is to use binary lifting.

The binary indexed tree data structure is known to perform very well in practice, and is
very quick to implement (unlike AVL-tree for example). The major drawback of the binary
index tree is its auxiliary space use. Our approach uses Θ(N) auxiliary space, which is very
significant. Some possible solutions are coordinate compression and hashing, which are topics
we will discuss in future tutorials and lectures.

4


