Tutorial 8

Interpolation search, bisection method, ternary search
CS 240E W23
University of Waterloo
Monday, March 13

1. Ancestors in min-oriented heap. We are given a tree (not necessarily binary) with the min-heap ordering property. At every node, we store a list of its children (as with a trie).

Figure 1: An example tree.
The problem is to answer Q offline queries of the form: find the ancestor of x with key at least k that is closest to the root (given x and k). Give an algorithm to solve this problem in $O(n+Q \log n)$ time.
2. Bisection method. Given a function f that:

- takes an integral argument,
- is monotone on $\{a, \ldots, b\}$ (for given $a \leq b$),
- has the property that $f(a)=0$ and $f(b)=1$;
we would like to find the smallest $x \in\{a, \ldots, b\}$ such that $f(x) \geq 1$.
Suppose we are able to compute $f(v)$ for any $v \in\{a, \ldots, b\}$ in constant time. Give an algorithm to find x in time $O(\log (b-a))$.

3. Ternary search. Given a function f that:

- takes a floating point argument,
- is unimodal on [lo,hi];
we want to find $l o \leq x \leq h i$ such that $f(x)$ is minimum. Give an algorithm to achieve find x in $\Theta(\log (h i-l o))$ assuming we can compute $f(v)$ in constant time for any $v \in[l o, h i]$.

Figure 2: A function unimodal on $[l o, h i]$.

Note: we say f is unimodal on $[l o, h i]$ if:

- for all a, b with $l o \leq a<b \leq x$, we have $f(a)>f(b)$, and
- for all a, b with $x \leq a<b \leq h i$, we have $f(a)<f(b)$.

4. Improving interpolation search. Our goal for this problem is to improve the worstcase runtime of interpolation search, and to simplify its analysis.
(a) Give an instance with 10 elements such that interpolation search makes a comparison at every element.
(b) Give an instance of size n that achieves runtime $\Omega(n)$.

We know from lecture, the average case runtime of interpolation search (if keys are uniformly distributed) is in $\Theta(\log \log n)$. In tutorial, we will improve interpolation search to achieve $\Theta(\sqrt{n})$ worst-case runtime and $\Theta(\log \log n)$ average-case runtime. The material we will discuss is in Section 6.1.4 of [Biedl].

