## **Tutorial 8**

Interpolation search, bisection method, ternary search CS 240E W23 University of Waterloo Monday, March 13

1. Ancestors in min-oriented heap. We are given a tree (not necessarily binary) with the min-heap ordering property. At every node, we store a list of its children (as with a trie).



Figure 1: An example tree.

The problem is to answer Q offline queries of the form: find the ancestor of x with key at least k that is *closest to the root* (given x and k). Give an algorithm to solve this problem in  $O(n + Q \log n)$  time.

## 2. Bisection method. Given a function f that:

- takes an *integral* argument,
- is monotone on  $\{a, \ldots, b\}$  (for given  $a \leq b$ ),
- has the property that f(a) = 0 and f(b) = 1;

we would like to find the smallest  $x \in \{a, \ldots, b\}$  such that  $f(x) \ge 1$ .

Suppose we are able to compute f(v) for any  $v \in \{a, \ldots, b\}$  in constant time. Give an algorithm to find x in time  $O(\log(b-a))$ .

## 3. Ternary search. Given a function f that:

- takes a *floating point* argument,
- is unimodal on [lo, hi];

we want to find  $lo \le x \le hi$  such that f(x) is minimum. Give an algorithm to achieve find x in  $\Theta(\log(hi - lo))$  assuming we can compute f(v) in constant time for any  $v \in [lo, hi]$ .



Figure 2: A function unimodal on [lo, hi].

Note: we say f is unimodal on [lo, hi] if:

- for all a, b with  $lo \le a < b \le x$ , we have f(a) > f(b), and
- for all a, b with  $x \le a < b \le hi$ , we have f(a) < f(b).
- 4. **Improving interpolation search.** Our goal for this problem is to improve the worst-case runtime of interpolation search, and to simplify its analysis.
  - (a) Give an instance with 10 elements such that interpolation search makes a comparison at every element.
  - (b) Give an instance of size n that achieves runtime  $\Omega(n)$ .

We know from lecture, the average case runtime of interpolation search (if keys are uniformly distributed) is in  $\Theta(\log \log n)$ . In tutorial, we will improve interpolation search to achieve  $\Theta(\sqrt{n})$  worst-case runtime and  $\Theta(\log \log n)$  average-case runtime. The material we will discuss is in Section 6.1.4 of [Biedl].