Tutorial 9

Carter-Wegman’s hashing, number theoretic algorithms,
more problems on hashing and tries

CS 240E W23
University of Waterloo
Monday, March 20

Number theoretic algorithms

. For increasing the table size in hashing, we wanted to find a prime of a certain size.
Specifically, given an integer M > 1, we would like to find a prime of size at least 2M.

Our approach is based on Bertrand’s postulate:

For all n > 1, there is a prime p such that

n<p<?2n.

We now have a naive approach to finding this next prime: iterate over 2M < z < 4M,
and break as soon as we find that x is prime. We can check if a number z is prime by
iterating over its divisors (that are at most \/x) in O(y/x) time. This gives a runtime

of O(MvM).

If we could improve the time that it takes to check if x is a prime, we would dras-
tically improve the runtime. We will therefore try to efficiently precompute an array
is_prime|x] that stores a boolean indicating whether x is prime or not.

We will precompute primes with the Sieve of Eratosthenes, a very well-known and
practical algorithm for computing primes in range [0,n] in O(nloglogn) time. The
idea is to write down all the numbers between 2 and n, to initialize is_prime[z| to true
for all of them, and to iterate over them in increasing order.

Every time we arrive at a number that has not been “crossed out” (ie. is_prime|x] is
true), we “cross out” all the multiples of x starting with = - x.

is_prime[0..n] = {true, ..., true}
is_prime[0] = is_prime[1] = false
for i = 2..n:
if is_primel[i]:
for j = i*i..n:
is_prime[j] = false

When implementing the Sieve, we can store a dynamic array of all primes, by simply
inserting ¢ after the check is_prime[i]. We should also be careful because i*i will likely
overflow. The proof of runtime of this algorithm uses techniques that go beyond the
scope of CS240E (we may discuss it in consulting hours if you are interested).

1

Carter-Wegman universal hashing

. The material we discussed is [Biedl, line 4700]. The notes also contain the example
that we did not complete in class (specifically, in Figure 7.13).

More problems on tries

. Prefix search. Let wy,...,w; be words, where n = |wy| + --- + |wg|. Give an
algorithm to find the longest word w such that w is the prefix of at least two words
from wq, ..., w.

. MSD-radix sort as a trie. Consider the following base-4 numbers:
300,211,112,230,1,0,12,101, 233, 110.

(a) Draw the recursion tree that results from sorting these numbers with MSD-radix.
Note that it is a 4-way pruned trie.

(b) Show that the expected time to insert a base-4 number into a 4-way pruned trie
is at most log, n + O(1), assuming all numbers have been uniformly chosen. You
may assume the numbers have been padded with Os so that all numbers begin
with the same place value.

. Suppose we have n English words (26-letter alphabet), where the combined length of
all words is [. Give an algorithm to sort the words (obtain lexicographical ordering) in
O(l) time.

More problems on hashing

. Universal hash functions. Recall: a family ‘H of hash-functions is universal if

P(h(k) = h(K)) < —

o for all keys k # k.

‘H has uniform hash-values if

P(h(F) =) = 17,

for all keys k£ and all slots i. The probability is taken over the random uniform choice
of h among H.

(a) Consider the family # on slide 4 of module07e:
U=27sM=2
hy(k) = ((k+b) mod 5) mod 2
H={hy:beZs}

Choose b € Z;5 randomly to get hash-function. Does this have uniform hash-
values? Is this universal?

(b) Assume that # has uniform hash-values. Prove or disprove: The expected time
for an unsuccessful search in hashing with chaining is O(«).

(c¢) Assume that H has uniform hash-values. Prove or disprove: The expected time
for a successful search in hashing with chaining is O(1 + «).

	Number theoretic algorithms
	Carter-Wegman universal hashing
	More problems on tries
	More problems on hashing

