Tutorial 10

3 -sided range search, the good-suffix heuristic, and problems on range-search and on string matching.

CS 240E W23
University of Waterloo
Monday, March 27

1. The material on 3 -sided range search is in section 8.5 (line 5426) [Biedl].
2. The material on the good-suffix heuristic is in section 9.4.3 (line 6092) [Biedl].

Range search

3. Range tree space. Prove or disprove: for any set of n points in general position, the range tree uses $\Omega(n \log n)$ space.
4. Priority Search Tree [optional]. Show how to build a priority search tree in $O(n \log n)$ worst-case time. Note: in fact, $O(n)$ worst-case (using just CS240E material) is possible.
5. kd-tree. Create a set of n points and a range-query such that doing the range-query on the kd-tree of the points requires $\Omega(\sqrt{n})$ boundary nodes.

6. Quad-tree.

(a) For an arbitrary n, construct a set of points such that the quad-tree has at least n nodes, and give a range-search query such that all nodes are visited, and not a single point gets returned.
(b) Assume that T is a quad-tree with at least two points such that during some range-search, there is at least one outside node and at least one inside-node (the example from Module 8, slide 11 satisfies this). What is the minimum possible height of T ?
The example has height 3 , so the question is whether height 3 is always required, or whether this could also happen with height 2 or even height 1 ?

String matching

7. Cyclic shift. Given two strings w and x of length n, determine if w can be obtained by cyclically shifting the characters of x. For example, the algorithm should return true if the input is alloy and loyal, and false if the inputs are tarot and otter. Your algorithm should take $O(n)$ time for two strings of length n.
8. Boyer-Moore. Apply the Boyer-Moore algorithm to the following pattern and text. Show
(a) with only the bad-character heuristic,
(b) [optional] with the good-suffix heuristic.

T:

9. Most common substring. Let s be a string of length n and let \mathcal{T}_{s} denote the corresponding suffix tree. For an integer parameter $1 \leq l \leq n$, give a $O(n)$ time algorithm that finds a most commonly occurring substring of length l in s.

