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Polynomial multiplication with Fast Fourier Transform (FFT)

In tutorial, we will discuss a way to multiply, in O(n log n) time, two polynomials A(x), B(x).

A(x) = a0 + a1x+ · · ·+ an−1x
n−1 with n terms is [a0, . . . , an−1].

1. Given two vectors a = [a1, . . . , an] and b = [b1, . . . , bn], compute the dot product of a
with every cyclic shift of b.

For instance, when n = 3, we would like to compute:

[a1, a2, a3] · [b1, b2, b3],
[a1, a2, a3] · [b2, b3, b1], and

[a1, a2, a3] · [b3, b1, b2].

2. We are given two cyclic strips a = [a1, . . . , an] and b = [b1, . . . , bn] where every entry
of each of a, b is either zero or one.

Figure 1: example cyclic strips.

Give an algorithm to find the number of ways to stack them on top of each other so
that no two one (1) entries of both a and b are adjacent.

3. Given a string s over the alphabet {A,B}, we say that a pair of indices 0 ≤ i < j ≤ n−1
forms a k-inversion if s[i] = B, s[j] = A, and j− i = k. For example, the string BABA
has two one-inversions, one three-inversion, and no two inversions.

Give an algorithm to find all k-inversions in a given string s, for all 1 ≤ k ≤ n− 1.

4. Given two images, one smaller in both dimensions that the other, where each pixel is
either of colour 0 or 1, we can overlap them and count the number of matches: i.e. the
number of pixels of the same colour.

For example, if the small image is,
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1 0

0 1

and the large image is

1 0 0

0 1 0

0 0 1

then there are two placements that achieve four matches (align at top-left corner, or
align at bottom-right corner), which is optimal.

Give the placements of the smaller image on top of the larger image that are tied for
having the most matches.

Compression

5. Huffman encoding examples.

(a) Build a Huffman tree for S = “pusheen”.

(b) Below is an encoding tree for the string “xerxes.” Argue that it is not a Huffman
tree.

6. Huffman encoding. Let c1, . . . , ck be the characters of a text, sorted by (not neces-
sarily strictly) increasing frequencies. Let s(c1), . . . , s(ck) be the prefix-free encoding
of these characters obtained with the Huffman encoding algorithm.

(a) Prof. I.N. Correct thinks that s(c1) must have the shortest codeword length, i.e.,
|s(c1)| ≤ |s(ci)| for all i = 2, . . . , k. Show that the professor is incorrect.

(b) Show that the professor is correct if the frequency of c1 is strictly larger than all
other frequencies.

2



7. LZW encoding examples. For the following LZW problems, consider the initial
dictionary to be the ASCII table.

(a) Encode the following string using LZW: BANANA_BANDANA

(b) Decode the following encoded string using LZW:

71− 73− 86− 69− 95− 77− 131− 82− 69− 128− 137− 65− 83

8. LZW encoding. Let S be a string of length n. Argue that the LZW encoding of S
must use Ω(

√
n) integers.
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