
5.1.1 Finding the min-degree vertex

For some earlier algorithms, we needed to find a vertex of minimum degree while the graph
is changing. For example, consider the greedy-algorithm to approximate VertexCover (and
more generally for SetCover). Here we always want to find a vertex of minimum degree, but
then the graph changes because we delete this vertex and its incident edges. In its most
general form, we want to support the query operation

� findMinDegree: returns a vertex that has minimum degree in the current graph (ties
are broken arbitrarily)

during the following update operations:

� addIsolatedVertex(v): adds to G a new vertex v that has degree 0.

� addEdge(v, w): adds to G a new edge (v, w) (it is assumed that v, w already exist).

� deleteEdge(v, w): removes edge (v, w) (it is assumed that (v, w) already exists).

� deleteIsolatedVertex(v): removes vertex v (it is assumed that v already exists and has
degree 0).

(To avoid trivialities, let us say that the empty graph has minimum and maximum degree 0.)
We assume that the graph is stored in such a way that the four update-operations take O(1)
time; this is possible using suitably cross-linked vertex-lists and edge-lists and incidence-lists
(details are left as an exercise).

The brute-force approach for findMinDegree would be to compute the vertex of minimum
degree from scratch, i.e., to go through all vertices, look up their degrees, and retain the one
where the degree is smallest. This would take Θ(n) time every time, making the algorithm
slow. (For example, the greedy-algorithm for VertexCover would take Θ(nm) time with this
approach.) Can we be faster?

Using a priority queue

A first idea is to use a priority queue, with the degree of each vertex as a key. Recall
that a priority queue is a data structure that stores items with keys (typically assumed to
be numbers, but they can be anything that can be compared and they do not have to be
distinct). It supports the operations insert, findMin, deleteMin, and some realizations also
support increaseKey and decreaseKey.

We can use a priority queue Q for finding the vertex of minimum degree as follows, by
storing every vertex v in Q with key deg(v). The operations can be implemented as follows:

� findMinDegree: execute Q.findMin.

� addIsolatedVertex(v): execute Q.insert with v and key 0.
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� addEdge(v, w): execute Q.increaseKey twice to increase the degree of v and w by one
each.

� deleteEdge(v, w): execute Q.decreaseKey twice to decrease the degree of v and w by
one each.

� deleteIsolatedVertex(v): execute Q.decreaseKey to decrease the key of v to −1 and then
do Q.deleteMin

If we realize the priority queue with a binary heap, and let each vertex store a reference
to where it is in Q, then all priority-queue operations take O(log n) time. (Here n is the
number of vertices in the graph, which is the same as the number of items stored in the
priority queue.) Each graph-update or graph-query operation uses a constant number of
priority-queue operations, and so also takes O(log n) time.

One could observe that many operations could be made faster. For example, addEdge
actually only takes O(1) time, because it increases the keys by only one, and (as one can
argue) this takes O(1) time in binary heaps where keys are integers. There are also other
priority queue implementations (e.g. Fibonacci-heaps) that implement decreaseKey in O(1)
(amortized) time for any key. However, no comparison-based implementation can do both
insert and deleteMin in o(log n) time (else we could sort faster).

One could also observe that all our keys are integers in the range [0, n], and there are
priority-queue implementations (such as van Emde Boas trees) that take advantage of this.
Using them, one could achieve a run-time of O(log log n) for the above operations. We will
not pursue this further because in our special situation (where all key-changes are ±1) we
can create a simpler data structure that achieves an even better run-time.

Using buckets

The data structure to use here is hashing with chaining, using h(k) = k (i.e., direct ad-
dressing) as the hash-function. This sometimes is also called a bucket-structure (the familiar
bucket-sorting algorithm is based on the same idea). We will review what it means here
without using hashing-terminology.

The main data structure is a dynamic array B that stores lists of vertices. Each vertex
v is stored in the list B[deg(v)]. We also keep a reference δ to the current minimum degree
in the graph. See Figure 5.1. Initially (when the graph is empty) we have δ = 0.

We are assuming that each v stores (and hence can look up in constant time) its degree
deg(v) as well as where it is in B[deg(v)], i.e. it has a reference to the appropriate list-item.
Initially, when the graph With this, we can now implement four of the required operations
easily as follows:

� GetMinDegVertex(): Simply return the first vertex in B[δ].

� AddIsolatedVertex(v): Simply insert v in B[0]. Also, the minimum degree now is 0, so
update δ ← 0.
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Figure 5.1: A graph and where its vertices are in the bucket structure.

For this and other graph-update operations, we list here only the changes that need
to be done to the bucket-structure; obviously we also need to do some changes to the
data structure that stores the graph.

Also, during this and other graph-update operations, the degree of v and where it is in
the bucket-structure changes. Since we store this information with v, we must update
it as it changes. However, these updates should be straightforward, and so we will not
clutter our pseudocodes with them.

� AddEdge(v, w): Call IncreaseDegree for each of v and w. Here, IncreaseDegree(v)
receives as input a vertex that is already in the bucket-structure, and it increases its
degree by one. To do so, look up d ← deg(v), and look up the list item � that stores v
in bucket B[d]. Remove � from B[d] and insert it into B[d+1]. Finally we must check
whether this has affected the minimum degree, which can happen only if δ= d. If so,
then check whether B[d] is now empty; if it is then update δ ← d+1.

� DeleteEdge(v, w): Call DecreaseDegree for each of v and w. Here, DecreaseDegree(v)
is symmetric to IncreaseDegree: look up d and � and move � into B[d−1]. Also update
δ ← min{δ, d−1}.

Directly from the description it should be clear that we spend O(1) time for each of
the above ‘easy’ operations. This leaves only one operation: DeleteIsolatedVertex(v). This
is much harder, because we know that prior to the deletion the minimum degree was 0,
but unless there is another isolated vertex, the minimum degree now increases and we have
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no idea what it is going to be. So finding it in O(1) worst-case time seems hard, and the
following algorithm uses more time in the worst-case.

Algorithm 6: DeleteIsolatedVertex(v)

1 � ← item where v is stored in B[0]
2 delete � from B[0]
3 if there are vertices left then
4 while (B[δ] is empty) do δ++ // min degree increases

The run-time of this algorithm is O(1 + δafter). In the worst case, this is very bad.
However, δafter can be big only if a lot of edges are left, which means that we did a lot of
(cheap) edge-insertions earlier. So we make edge-insertions ‘pay for’ the expense that now
happens when we delete an isolated vertices. Put different: we should use amortized analysis.

We will use the potential function method. Assume that time units are chosen such
that all easy operations take at most one time unit, and DeleteIsolatedVertex takes at most
1 + δafter time units. Define the potential function to be

Φ(i) = 2m− δ,

which is non-negative since δ ≤ �
v∈V deg(v) = 2m. Assuming that we start with an initially

empty graph, we have Φ(0) = 0 + 0 = 0, so this is a valid potential function.
If O is one of the ‘easy’ operations, then mafter ≤ mbefore + 1 and δafter ≥ δbefore − 2, so

Φafter ≤ Φbefore + 4 (this is actually an over-estimate, but good enough). So the amortized
run-time is

T actual(O) + Φafter − Φbefore ≤ 1 + 4 ∈ O(1).

Now consider operation DeleteIsolatedVertex. Its actual run-time is at most 1 + δafter time
units. We also know that mafter = mbefore and δbefore = 0. Therefore

T actual(O) + Φafter − Φbefore ≤ (1 + δafter) + (2mafter − δafter)− (2mbefore − δbefore)

= 1 + (2mafter − 2mbefore� �� �
0

) + δbefore� �� �
0

= 1

So the amortized time for all operations is in O(1).
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