
An Introduction to
Computational Finance

Peter Forsyth, University of Waterloo

www.scicom.uwaterloo.ca/˜paforsyt

CS497 Fall 2007



Introduction

Some Facts?

• Populations in the developed world are living longer

→ More people will need to live on invested capital in their

retirement years.

• Conventional wisdom

→ Stocks are good investments over the long term

• Recent study (Financial Analysts Journal, 2004)

→ An investor holding a diversified equity portfolio has a 14%

chance of a negative real return over a twenty year period
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Introduction

Financial Insurance

• Derivative securities (options, futures, forwards) are tools

which can be used to manage risk.

• Any investment which includes some kind of protection

contains an embedded option.

• Derivative securities are used by financial institutions to

hedge risk such as

– Currency fluctuations

– Uncertain energy costs

– Changes in interest rates
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Introduction

Individual Investors?

• Individual investors are often unaware that they buy/sell

options

• Contracts with embedded options

– Mortgage prepayment privileges

– Fixed rate natural gas home heating contracts

– Equity linked GICs

• As well, many pensions plans use derivative securities in their

investment portfolio
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Introduction

Do we need financial insurance?
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Call option

Example: A call option

• Suppose I have decided that I want to buy IBM stock for

$K in 1 month’s time

• But the price of IBM stock will fluctuate during the next

month

• I don’t want to pay more than $K for the stock

• But if the stock falls below $K, then I will be happy to pay

less than $K to own IBM

• Can I take out some sort of insurance to ensure that I will

have to pay at most $K for the stock?
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Call option

A call option

• A call option gives me the right, but not the obligation to

purchase the stock for a specified price (the strike price K )

at some time in the future (the expiry date T ).

S = value of stock

• By purchasing a call option, at strike K, expiry 1 month

– If S > K, I exercise the option, and buy the IBM stock for

$K.

– If S < $K, I let the option expire, and buy the IBM stock

on the open market
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Call option

The option value

• In one month, we know for sure what the option is worth

• If S > K, I can buy the stock for K and immediately sell it

for S

• If S < K, I will not exercise the option (why pay K for

something worth S?)

• More mathematically (T = one month)

Value of call option = V (T = 1 month) = max(S −K, 0)

• What is a fair price for this option today?
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Put option

A put option

Our previous example was for a call option

• Protection against rising prices

• Protection against falling prices can be obtained using a put

option

• A put option is the right but not the obligation to sell an

asset for the strike K at time T .

• More mathematically (t = T )

Value of put option = V (t = T ) = max(K − S, 0)
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Terminology

Some Jargon

The value of the option at maturity is also called the payoff

Payoff of call = max(S −K, 0)

Payoff of put = max(K − S, 0)

A European Option can only be exercised at maturity T .

An American Option can be exercised at any time in [0, T ].
↪→ The holder can decide to receive the payoff at any time.

↪→ Most options traded on exchanges are American style.

We will consider a European call option in this example.
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Simple model

A simple model: call option

• Suppose the strike price is $100, and the stock is trading

today at S0 = $100.

• Let’s assume a very simple model: in one month’s time, the

stock price can have only two possible values

S0 → S1 = 110

S0 → S2 = 90
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Tree model

A two state tree

S0 = $100

S1 = $110

S2 = $90

V0 = ?

V1 =  $10

V2 =  $0

V = max(S -100, 0)

What is the value of

the option today? V0
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Tree model

Some extra information

S0 

S1 

S2 

V0 = ?

V1 =  $10

V2 =  $0

p =  .20

p

(1-p)

p

(1-p)

Probability

S0 → S1 = p

S0 → S2 = (1− p)
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Tree model

Option value?

• At this point, most people would value the option today as

the discounted, expected value of the payoff

V0 = e−r∆t (pV1 + (1− p)V2)

r = interest rate

∆t = One month

• To keep things simple here, let’s ignore the discounting

effects (r∆t ' 0)
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Tree model

Option value

• This gives (in our example: p = .2)

V0 = .2× $10 + .8× $0

= $2

• Suppose I offer to buy this option from you for $3, will you

accept my offer?

• On each option, you will make an expected profit of (price -

expected payout = 3− 2) $1
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Tree model

An arbitrage opportunity

• I will be very happy to buy the option from you for $3, since

I will immediately exploit the arbitrage opportunity

• I can devise a trading strategy, such that I will make a profit

of $2, regardless of whether S0 → 110, or S0 → 90.

• How do I do this? Sounds like magic.
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Hedge Portfolio

The Hedging Portfolio

• To exploit this arbitrage opportunity, I will construct a

portfolio Π which is long the option, and short α shares

Π = V − αS

– A short position means I have borrowed the security, sold

it, but have to give it back at some future time.

• I will choose α so that there is no uncertainty about the

value of the portfolio at the expiry time of the option
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Hedge Portfolio

The Hedging Portfolio

• The possible portfolio values are (in 1 month)

Π1 = V1 − αS1

Π2 = V2 − αS2

• Setting Π1 = Π2, and solving for α

α =
V1 − V2

S1 − S2

=
10− 0

110− 90
=

1
2
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Hedge Portfolio

The Hedging Portfolio

• Today, I buy the option from you for $3.

→ I have to pay $3.

• I borrow 1/2 share of the stock, and sell it (S0 = $100). I

will have to return this in one month’s time.

→ This gives me $50 in cash.

• The total value of my cash is C0

C0 = $50− $3 = $47
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Hedge Portfolio

Case : S0 → S1 = 110
Now, in one month’s time, suppose

• S0 → S1, which means that

V1 = $10

−αS1 = −1
2
(110) = −$55

• (I have to buy 1/2 shares at $110, and return to broker)

• So the value of the portfolio is Π1 = V1 − αS1 = −$45.

• But I have $47 in cash, so I gain $2.
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Hedge Portfolio

Case : S0 → S2 = 90

Similarly

• S0 → S2, which means that

V2 = $0

−αS2 = −1
2
(90) = −$45

• So the value of the portfolio is Π2 = V2 − αS2 = −$45.

• But I have $47 in cash, so I gain $2.
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Arbitrage

Arbitrage opportunity

• So, no matter what happens to the stock (it can go up or

down, I don’t care), I make a riskless profit of $2.

• What would happen in reality?

– Arbitrageurs would buy up as many options as possible

– This would drive up the price of the option, until the option

price was the no-arbitrage price.

• The observed market price should be the no-arbitrage price,

not the expected payoff
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Arbitrage

No-Arbitrage Price

• In our example, the no-arbitrage price is given by solving

V0 − αS0 = Π1 for V0, giving V0 = $5.

• Note that we do not care what the probabilities of an up or

down movement in the stock price are!

• A bank can sell me the call option for $5(+ some profit),

and construct the hedging portfolio.

• At expiry, the portfolio can be liquidated to give exactly

enough to pay off the option regardless of whether S0 →
S1, S2 (plus a locked in profit)
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More Realistic Models

• Assume more complex stochastic models for stock prices

• But use same basic no-arbitrage idea

• Black-Scholes differential equation for no-arbitrage price

(Scholes-Merton, Nobel Prize in Economics, 1997)

– Can be solved using numerical algorithms for no-arbitrage

price

• Note that we do not care about precise path taken by stock

(we can’t predict it)

• Only gross statistical properties (volatility)
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Conclusions

Conclusions

• Many financial products contain embedded options

• These options are financial insurance, which are used to

minimize risk

• Even though stock prices are unpredictable

• We can determine the no-arbitrage price of an option

• We can construct a hedging strategy to payout option

(insurance) no matter what happens to the stock price!

• Modern finance is now a very technical discipline

(Mathematics, Statistics, Computer Science)
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Reading Material

More Reading

• Peter Bernstein, Capital Ideas: the improbable origins of

modern Wall street

• Burton Malkeil, A random walk down Wall Street

• N. Taleb, Fooled by Randomness

• N. Taleb, The Black Swan

• An Introduction to Computational Finance without

Agonizing Pain (wwww.scicom.uwaterloo.ca/ paforsyt/agon.pdf)
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Introduction

A Model for Stock Prices

• Observation: For every quoted price we see in the stock

market: there is one buyer for every seller

• In each transaction

– Buyer thinks price is going up

– Seller thinks price is going down

• Conclusion: Stock prices follow a random walk (verified by

statistical tests)

– No observable patterns in prices
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SDE

Stochastic Differential Equation for Price
• Let S be the price of an underlying asset (i.e. TSX index).
• A basic model for the evolution of S through time is Geometric Brownian
Motion (GBM)

• In t → t + dt, S → S + dS

dS

S
= µdt + σφ

√
dt

µ = drift rate,

σ = volatility,

φ = random draw from a

standard normal distribution
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Monte Carlo Paths
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Lattice model

A lattice model

In order to price an option, don’t want to deal with the SDE

directly.

We will develop a discrete lattice model of GBM.

Denote today’s stock price (t = t0) by S0
0. At t1 = t0 + ∆t,

S0
0 → S1

1 ; up with probability p

S0
0 → S1

0 ; down with probability q = 1− p
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Lattice model

A lattice model

S0
0

S1
1

S0
1

S2
2

S1
2

S0
2

At t2 = t1 + ∆t,

S1
1 → S2

2 ; up with probability p

S1
1 → S2

1 ; down with probability q = 1− p

S1
0 → S2

1 ; up with probability p

S1
0 → S2

0 ; down with probability q = 1− p
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Lattice model

A Recombining Lattice

S0
0

S1
1

S0
1

S2
2

S1
2

S0
2

Note: Sn
j

Asset at timestep

n,

node j.

n is a superscript

not a power
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Lattice model

General Case

At node j, timestep tn = n∆t, asset price is denoted by Sn
j .

SJ
n

SJ
n

+
+
1
1

SJ
n + 1

p

q
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Lattice model

Consistent with GBM

If we choose:

Sn+1
j+1 = Sn

j eσ
√

∆t

Sn+1
j = Sn

j e−σ
√

∆t

p =
1
2
[1 +

(µ

σ
− σ

2

)√
∆t]

q = 1− p

then, as ∆t → 0, random walks on this discrete lattice converge

to the solution of the GBM SDE.
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Lattice model

Convergence to GBM

In other words, if we take many random walks on the lattice

with these parameters, and record a histogram of the outcomes

(an approximate probability density function).

Then, as ∆t → 0, this approximate probability density

converges to the probability density function of GBM.

See notes for argument (not proof).

Idea: develop discrete no-arbitrage pricing model on the lattice,

and then as ∆t → 0, this pricing model should converge to the

correct solution for GBM.
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Lattice model

No-arbitrage Lattice

We are going to use the same idea as in our simple example. At

node Sn
j , associate an option value V n

j and a hedging portfolio

Pn
j = V n

j − αSn
j

SJ
n

SJ
n

+
+
1
1

SJ
n + 1

p

q

VJ
n

VJ
n

+
+
1
1

VJ
n + 1

PJ
n

PJ
n

+
+
1
1

PJ
n + 1
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Lattice model

No-arbitrage Lattice

PJ
n

PJ
n

+
+
1
1

PJ
n + 1

Value of hedging portfolio at t = tn+1

Pn+1
j+1 = V n+1

j+1 − αSn+1
j+1

Pn+1
j = V n+1

j − αSn+1
j

Now, determine α so that Pn+1
j+1 =

Pn+1
j
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Lattice model

No-arbitrage Lattice

V n+1
j+1 − αSn+1

j+1 = V n+1
j − αSn+1

j (1)

So that

α =
V n+1

j+1 − V n+1
j

Sn+1
j+1 − Sn+1

j

(2)

But, this portfolio is risk free (no uncertainty about its value), so that

Pn
j = e−r∆tPn+1

j+1

→ V n
j − αSn

j = e−r∆t(V n+1
j+1 − αSn+1

j+1 ) (3)

Substitute (2) into (3)
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Lattice model

No-arbitrage Lattice

V n
j = e−r∆t

(
p∗V n+1

j+1 + (1− p∗)V n+1
j

)
p∗ =

er∆t − e−σ
√

∆t

eσ
√

∆t − e−σ
√

∆t
(4)

Note that the real probabilities of an up/down move do not

appear in (4) (p∗ does not depend on the drift µ).

We have determined the no-arbitrage value of V n
j in terms of

V n+1
j+1 , V n+1

j .

CS497 Fall 2007 38



Lattice model

No-arbitrage Lattice
Recall that the no-arbitrage value is not the expected value.

But, for ∆t → 0, then

0 ≤ p∗ ≤ 1

so that (
p∗V n+1

j+1 + (1− p∗)V n+1
j

)
looks like an expectation.

But its not the real expected value → termed the expectation

in the risk neutral world.
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Lattice model

Delta Hedging
Since our hedging portfolio is

Pn
j = V n

j − αSn
j

α =
V n+1

j+1 − V n+1
j

Sn+1
j+1 − Sn+1

j

Note that

α ' ∂V

∂S
= VS

(Sn+1
j+1 − Sn+1

j )→ 0

VS is called the option delta.

This hedging strategy is called delta hedging
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Lattice model

Full Lattice Algorithm

Choose ∆t = T/N . Construct tree of prices

Sn
j = S0

0e
(2j−n)σ

√
∆t

n = 0, ..., N

j = 0, .., n

We know the value of the option at t = T = tN

For j = 0, ..., N

V N
j = Payoff(SN

j )

EndFor
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Lattice model

Backward Recursion: European Option

For n = N − 1, ..., 0

For j = 0, ..., n

V n
j = e−r∆t(p∗V n+1

j+1 + (1− p∗)V n+1
j )

EndFor

EndFor

V 0
0 is the no-arbitrage value of the option at t = t0, S = S0

0.

We also get an approximate value of the option delta = VS at each node in

the tree. This is the hedging parameter.
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Lattice model

Backward Recursion: European Option

V0
0 Payoff(SJ

N)

Backward
Recursion

Build
Tree

V n
j = e−r∆t(

p∗V n+1
j+1 + (1− p∗)V n+1

j

)
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Lattice model

American Options?

Recall that an American option can be exercised at any time.

and the holder can receive the payoff.

So, the holder must decide, at each instant in time

• Continue to hold the option

• Exercise immediately

A rational investor will exercise if the value of exercising is

larger than the value of continuing to hold.
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Lattice model

Backward Recursion: American Option

For n = N − 1, ..., 0

For j = 0, ..., n

V n
j := e−r∆t(p∗V n+1

j+1 + (1− p∗)V n+1
j )

V n
j := max(V n

j ,Payoff(Sn
j ))

EndFor

EndFor

This is a dynamic programming solution to the American option optimal

exercise problem.
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Optimal Strategy

Dynamic Programming

• Note that the optimal exercise of an American option requires

solution of a global optimization problem

• But, since we work backwards from the end state N , we

examine all possible outcomes, and choose the optimal choice

at all nodes at state N − 1, and so on

• This reduces the global optimization to a set of trivial one

step optimal choices
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PDE

Black-Scholes Equation
As ∆t → 0, the solution from the lattice algorithm converges to the solution
of the Black-Scholes partial differential equation (B-S PDE)

∂V

∂t
+

σ2S2

2
∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

It can be shown that

(V lattice)n
j = (V exact)n

j + O(∆t)

∆t → 0

↪→ The lattice method is simply a numerical method for solving the B-S

PDE.
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Hedge

Hedging
• Let V (S, t) be the value at any time of the option (computed from our
lattice).

• The bank will sell the option to me for V (S, t = 0) today, and construct
the following portfolio Π (−tive → short)

Π = −V + αS + B

V = value of option

S = price of underlying

B = cash in risk free money market account

α = units of underlying

Note we have included a bank account B in our total portfolio Π.
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Hedge

Hedging

So, what does the bank do?

• Sell the option today for V (S, t = 0) (lattice price).

• Construct the portfolio Π, by buying α(S, t = 0) units at

price S, and depositing B in the money market account

• As t → t + ∆t, S → S + ∆S, bank rebalances the hedge, by

buying/selling underlying so that α(S + ∆S, t + ∆t) = VS

• Hedging portfolio is Delta Neutral
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Delta Hedge

Delta Hedging

• This strategy is called Delta Hedging

• Note that this is a dynamic strategy (rebalanced at finite

intervals)

• It is self-financing, i.e. once the bank collects cash from

selling option, no further injection of cash into Π is required.

• At time T in the future, the bank liquidates Π, pays off short

option position, at zero gain/loss, regardless of random path

followed by S.
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No-arbitrage

No-arbitrage Price

• The value of the option V (S, t) is the no-arbitrage value

• V (S, t = 0) is the cost of setting up the portfolio Π at t = 0

• The value of the option is not the discounted expected payoff

Does this actually work? Can we construct a hedge so we can’t

lose, regardless of the random path followed by S?

• Simulate a random price path, along path, carry out delta

hedge at finite rebalancing times (not a perfect hedge)

• Liquidate portfolio at expiry, pay off option holder, record

profit and loss
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Simulation

Monte Carlo Delta Hedge Simulation:
Discounted Relative Profit and Loss
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Real World

Reality

• Nobody hedges at infinitesimal intervals, volatility 6= const.,

GBM not a perfect model

• Bank wants to make a profit

V market
buy = V (S, t)model + ε1 + ε2

V market
sell = V (S, t)model − ε1 − ε2

ε1 = profit ε2 = compensation for imperfect hedge

V market
buy − V market

sell = bid-ask spread
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GBM?

What’s Wrong with GBM?

• Equity return data suggests market has jumps in addition to

GBM

– Sudden discontinuous changes in price
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GBM?

What’s Wrong with GBM?

• Volatility not constant

• VIX index is a measure of instantaneous volatility (S&P500)

• Volatility is itself stochastic

CS497 Fall 2007 55



Notes

Research Challenges

• Pricing and hedging options under jump processes and

stochastic volatility (Monte Carlo, PDE methods)

• Pricing exotic options (Numerical soln of PDEs)

• Optimal trade execution (algorithmic trading)

– Optimal stochastic control

• Model calibration (optimization)

CS497 Fall 2007 56



Notes

Notes Reading

An Introduction to Computational Finance without Agonizing

Pain (www.scicom.uwaterloo.ca/ paforsyt/agon.pdf)

Sections: 1, 2.1, 2.2, 2.3, 2.4, 5

If you have time: 2.5, 2.6, 8.1, 8.2

And more if you like!

CS476, Winter 2008 Introduction to numeric computation for

financial modelling
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