
Verified Optimizations for
the Intel? IA-64 Architecture??

Jim Grundy

The Australian National University
Department of Computer Science, Canberra ACT 0200, Australia

Jim.Grundy@acm.org

Abstract. This paper outlines a formal model of the Intel IA-64 architecture, and
explains how this model can be used to verify the correctness of assembly-level
code optimizations. The formalization and proofs were carried out using the HOL
Light theorem prover.

1 Introduction

Current microprocessors dynamically reorder the sequence of instructions being exe-
cuted to extract greater performance. The IA-64 takes a different approach [3, 6]. By
exposing architectural features that would ordinarily be hidden, IA-64 allows the com-
piler to reorder instructions prior to execution. By moving the burden of instruction
reordering from hardware to software, resources are freed to increase performance in
other ways.

Formal methods have been applied to instruction reordering hardware [7], but as the
responsibility for reordering instructions moves from hardware to software, so does the
obligation to ensure the reorderings preserve the meaning of the code. This paper proves
the correctness of some of the instruction reorderings performed in software for the IA-
64. The work described deliberately stops-short of tackling the open-ended difficulty
of verifying general properties of IA-64 programs. Instead, the proofs are limited to
checking equivalence between similar small programs; the kinds of proofs that typify
verification of individual optimizing transformations. The purpose of the work is to
investigate the extent to which such proofs can be automated. The formalization and
proofs were carried out with the HOL Light theorem prover [5].

2 Examples: Control and Data Speculation

This paper will focus on two examples of instruction reordering. The first illustrates
control speculation, where an instruction is executed even though the result is not
known to be needed. The second example illustrates data speculation, where an in-
struction is executed using data not known to be accurate.

? All names and brands are the property of their respective owners.
?? Research supported by the Intel Corporation and the Australian Research Council.

original code

(p1)br label
ld8 r9 r5
add r2 r9 r3

optimized code

ld8.s r9 r5
(p1)br label

chk.s r9 reload
continue: add r2 r9 r3

reload: ld8 r9 r5
br continue

Fig. 1. Control speculation example

2.1 Control Speculation

The execution of most IA-64 instructions may be predicated on the value of a one-bit
predicate register. If the nominated register holds true, the instruction executes nor-
mally; if not, it has no effect. Predicated instructions are written with the predicate
register parenthesized to the left. An example can be seen in the first instruction of the
‘original’ code fragment in Fig. 1.

Consider the original code presented in Fig. 1. If p1 holds true, then control branches
to label. If not, execution falls through to the next instruction, which loads the general
purpose register r9 with 8 bytes from the address held in r5. The values held in r9
and r3 are summed, and the result stored in r2.

Load instructions take several cycles to complete, and in this program the load is
followed by an add which depends upon the value loaded. The execution of the add
must therefore stall, to allow the load to complete before it can execute. We would like
hide the load latency by moving the load earlier in the instruction stream. Unfortunately,
we cannot execute the load earlier as it appears immediately after a conditional branch;
if the branch is taken the load should not be executed. It is tempting to think we could
move the load before the branch and ignore the result if it is not needed; this would be
a control speculative execution of the load. However, this could cause a fault if the load
tried to access an invalid address. A correct, but unnecessary, load could also incur a
performance penalty if it required nonresident memory to be swapped in.

On a traditional architecture the load would stay where it was, but the IA-64 offers a
way around these problems. Every register has a corresponding one-bit tag called a not
a thing (nat) bit. A control speculative version of the load instruction is provided, which
quietly sets this bit rather than causing a fault (including a page fault). The nat bit can
be checked to see if the load succeeded. Using this feature, the code can be optimized
as shown in Fig. 1.

The optimized code begins with a control speculative load, which attempts to read
data into r9. If the load fails, the nat bit of r9 is set. Later, the chk.s instruction checks
if r9 contains valid data. If the nat bit is clear, the load succeeded and execution con-
tinues unaffected. If it is set, execution is transferred to the code labeled reload, where
the load is retried. The second load will exhibit the true faulting behavior, perhaps caus-
ing nonresident memory to be swapped in so the load can complete. Both paths then
execute the add instruction.

original code

st2 r1 r2
ld4 r3 r4

optimized code

ld4.a r3 r4
st2 r1 r2
chk.a r3 reload

continue:

reload: ld4 r3 r4
br continue

Fig. 2. Data speculation example

2.2 Data Speculation

Figure 2 gives another example optimization. Consider the unoptimized code. The first
instruction stores two bytes from r2 to the address held in r1. The second loads four
bytes into r3 from the address held in r4. As before, we would like hide the load la-
tency from any subsequent instructions by moving the the load earlier in the instruction
stream. However, this would result in incorrect behavior if the memory region writ-
ten by the store overlaps that read by the load. In most situations the regions will not
overlap, but they might, so the load must remain after the store.

The IA-64 provides a way around this obstacle with a special data speculative ad-
vanced load instruction. The advanced load records the region of memory a register
was loaded from. A test can be used to check if the region has been overwritten since
the load. Using this feature, the code can be optimized as shown. The optimized code
begins with an advanced load, followed by the store. Next, register r3 is checked to see
if it was effected by the store. If it was, a branch is taken to the label reload, where it
is reloaded with the correct data.1

3 A Model of the IA-64

Our aim is to describe an abstract model of an IA-64 machine that can be used to
show that the optimized code fragments just presented have the same behavior as the
corresponding unoptimized fragments. This section will describe each component of
the IA-64 architectural state that needs to be modeled to verify these optimizations.

3.1 Data Memory

We make the simplifying assumption that the instruction and data memories can be
modeled separately. The data memory is defined in terms of two types, word and size.
The type word describes 64-bit words, which are used to hold both addresses and data.
The type size describes the units in which memory is accessed: 1, 2, 4 or 8 bytes.

word
def= {n | n < 264} size

def= {1,2,4,8}

1 Other IA-64 instructions can handle these simple examples more succinctly. Here we present
only the most general forms of speculation and recovery.

The function zext takes a word w and a size s, and returns a new word with a zero-
extended copy of the first s bytes of w.

`defzext w s = wmod28×s [zext def]

A word (address) and a size together describe a region of memory. The predicate
overlapped determines if two regions overlap.

`defoverlapped a1 s1 a2 s2 =
(∃x·a1 ≤ x∧ x < a1 + s1∧a2 ≤ x∧ x < a2 + s2)

[overlapped def]

The data memory is modeled as a function from words (addresses) to words (val-
ues). The mem read and mem write operations are described as follows:

`defmem read m a s = zext (m a) s [mem read def]

`def(mem read (mem write m a s w) a s = zext w s)∧
(¬overlapped a1 s1 a2 s2 =⇒

mem read (mem write m a2 s2 w) a1 s1 = mem read m a1 s1)

[mem write def]

Note that the behavior of reads and writes that access overlapping, but not identical,
regions of memory is unspecified. Accurate modeling of such accesses is not necessary
to verify optimizations like the ones discussed here.

Not all regions of memory are valid sources or destinations, this includes those that
extend outside the address space, but may include others as well.

`defmem valid source a s =⇒ a+ s ≤ 264 [mem valid source def]

`defmem valid dest a s =⇒ a+ s ≤ 264 [mem valid dest def]

Some, sequential, regions of memory should be accessed only in the order originally
specified. If, for example, IO devices are mapped into the memory space, those regions
will be sequential. We do not specify which regions of memory are sequential, only that
some may be.

`defmem seq a s =⇒ T [mem seq def]

Not all regions of memory may be read speculatively. This includes invalid sources
and sequential regions, but may include other regions as well. An obvious example is
memory that is nonresident and would therefore need to be swapped in. The validity
of speculatively accessing a memory region may change as the state of the machine
changes. The mem valid spec source predicate takes an extra parameter x to repre-
sent the abstract state of the machine. It is not necessary to specify how the value of
mem valid spec source depends on x, only that it may, and that the type of x is suffi-
ciently large to encompass the state of the machine.

`defmem valid spec source x a s =⇒
mem valid source a s∧¬mem seq a s

[mem valid spec source def]

Memory Access Ordering: It is not always possible to reorder memory accesses as
described in Sect. 2.2. Code to synchronize multiple processes may depend on the pre-
cise ordering of those accesses. Changes to the memory access ordering that appear
correct when viewed from the perspective of an individual process, may not be cor-
rect when the collection of processes are considered as a whole. The IA-64 provides
special variants of the load and store instructions, and a special ‘memory fence’ in-
struction for use in such routines. These instructions must respect the memory access
ordering. The execution of the ordinary load and store instructions are not required to
access memory in the order they were issued. The memory accesses may be reordered
or even coalesced by the hardware, provided that the resulting access order satisfies
read-after-write (RAW), write-after-write (WAW), and write-after-read (WAR) data de-
pendencies [6]. The optimizations considered here use only the ordinary versions of
the load and store instructions, and so the memory model presented does not address
access ordering. Mike Gordon has described a more elaborate memory model that en-
compasses memory access ordering issues for the Alpha architecture [4].

3.2 General Purpose Registers

The IA-64 architecture defines 128 general purpose registers. Each register holds a 64-
bit word and a one-bit tag called a not a thing (nat) bit. The role of the nat bit is to
indicate when the data held in the register is invalid due to a failed control speculation.
These bits are set by failing control speculative loads, and are propagated by operations
that use invalid data as input. We will describe the contents of a register with a record
type:2

register
def= �val:word;nat:bool�

These registers cannot necessarily all be accessed by the instructions of a particular
routine. Each routine has access to a subset of the registers known as a frame. The
current frame moves though the register file as subroutines are entered and exited. This
is similar to the register window system of the SPARC architecture [9], except that IA-
64 frames may be of variable size. Hardware automatically renames the registers so that
the current frame appears at the start of the register file. Even though the optimizations
described here do not involve subroutine calls, the description of the register frame
mechanism cannot be completely ignored. Within a routine, attempts to write registers
not in the current frame will cause a fault, while reading such registers will produce
undefined results.

A new type grindex is defined for the set of general purpose register indexes, and we
define a constant sof (size of frame) of that type to model the size of the current frame.
The actual value of sof is unimportant, except that all frames must contain at least 32
registers.3

2 The actual formalization uses tuples as records are not supported in HOL Light. Records, in
the style of hol98 [8], have been used here to simplify the presentation.

3 The size of frame (sof) is defined as a constant because its value is not changed by the instruc-
tions used in the examples presented here. In general, however, its value can change and is
better modeled as part of the state space defined in Sect. 3.5.

grindex
def= {n | n < 128} `def32 ≤ sof [sof def]

We define predicates reg valid source and reg valid dest to indicate which registers
may be read and written.

`defreg valid source i = i < sof [reg valid source def]

`defreg valid dest i = reg valid source i∧ (i 6= 0) [reg valid dest def]

The definition of the read and write operations for registers is straight forward; the
only complications being due to the under-determined value of invalid reads and the
hard-wired value of register 0. Note that the parameter x, as before, is used to allow the
result of an undefined read to depend on some abstract notion of the general machine
state.

`defreg valid source i =⇒
reg read x f i = if i = 0 then �val:= 0;nat:= F� else f i

[reg read def]

`defreg write f i v = (λ j· if j = i then v else f j) [reg write def]

It was not necessary to under-specify the result of invalid writes, because IA-64 instruc-
tions raise a fault rather than attempt this operation.

The following basic theorems regarding register operations are necessary stepping
stones to verifying the optimizations.

` reg read x f 0 = �val:= 0;nat:= F� [reg read zero thm]

` reg valid dest i =⇒ reg read x (reg write f i v) i = v [reg read eq thm]

` reg valid source i∧ i 6= j =⇒
reg read x (reg write f j v) i = reg read x f i

[reg read ne thm]

` reg write (reg write f i v) i w = reg write f i w [reg write eq thm]

3.3 Predicate Registers

The IA-64 includes 64 one-bit predicate registers. These registers can be used to mask
execution of individual instructions. If the execution of an instruction is conditional
on the value of a predicate register, then the instruction is said to be predicated on that
register. The description of the predicate registers is simpler than that of the general pur-
pose registers as there is no notion of frame, the predicate registers are always visible,
and their contents are always valid. Strictly speaking, (almost) all IA-64 instructions are
predicated, those which are to be executed unconditionally are predicated on register 0,
which is hard-wired to true. Writes to predicate register 0 are allowed, but they have

no visible effect on the state. The operators on the predicate registers are pred read and
pred write, and their definitions are similar to those for reg read and reg write.

prindex
def= {n | n < 64}

`defpred read f i = if i = 0 then T else f i [pred read def]

`defpred write f i b = (λ j· if i 6= 0∧ j = i then b else f j) [pred write def]

Properties similar to those proved about reg read and reg write hold for pred read
and pred write as well.

` pred read f 0 = T [pred read 0 thm]

` i 6= 0 =⇒ pred read (pred write f i b) i = b [pred read eq thm]

` i 6= j =⇒ pred read (pred write f j b) i = pred read f i [pred read ne thm]

` pred write (pred write f i b) i c = pred write f i c [pred write eq thm]

3.4 The ALAT

Data speculative, or advanced, load instructions must keep track of the integrity of data
that has been loaded. Any subsequent stores overlapping the region loaded will invali-
date the data. On the IA-64 this task is performed using an architectural feature called
the Advanced Load Address Table (ALAT).

Ideally, the ALAT records the following information for each speculatively loaded
register:

– Whether the data in the register is valid.
– If so, what region of memory the data was loaded from.

The ALAT entry for each register can be described as a record as follows:

alat entry
def= �valid:bool;addr:word;sz:size�

The information recorded in the ALAT does not have to be completely accurate to
ensure the correct behavior of IA-64 programs. If the ALAT records a register as hold-
ing valid data, then that data must be valid; but the ALAT may falsely record that the
data in a register is invalid. Such inaccuracy could cause suboptimal performance as it
may force valid data to be reloaded, but the functional behavior of the program should
be unaltered. There are many reasons why a particular implementation of the ALAT
might exhibit such inaccuracy. For example, the ALAT may have fewer entries than
there are registers. In order to capture the full generality of potential ALAT implemen-
tations, the specification presented gives only those properties that must be honored to

guarantee correct program execution. This specification allows the ALAT to lose infor-
mation in a variety of controlled ways. Indeed, an empty table would trivially satisfy
the specification, though it would make for inefficient execution.

An ALAT will be modeled as a function from register indices to ALAT entries. The
simplest operation on the ALAT does nothing except allow the ALAT to forget about
the validity of one or more registers. This operation is called leak.

`def(¬(t i).valid =⇒¬(leak t i).valid)∧
((leak t i).valid =⇒ leak t i = t i)

[leak def]

The first clause of the definition asserts that the leak operation will not cause an invalid
register to become valid. The second clause states that any register still valid after the
leak has the same ALAT entry it had before.

A more constructive operation attempts to add information to the ALAT. The func-
tion validate t i a s attempts to add to the ALAT t the fact that register i contains valid
data loaded from the region with address a and size s. It might not succeed, and it may
cause the ALAT to forget about other registers.

`def(¬(t j).valid =⇒¬(validate t i a s j).valid∨ i = j)∧
((validate t i a s i).valid =⇒

validate t i a s i = �valid:= T;addr:= a;sz:= s�)∧
(i 6= j∧ (validate t i a s j).valid =⇒ validate t i a s j = t j)

[validate def]

The first clause of this definition asserts that validating a register i will not cause any
other register to become valid. The second clause asserts that if after validating reg-
ister i, it is indeed valid, then i has associated with it the address and size supplied.
The final clause states that if any other register is valid after the operation, the entry
associated with it is unchanged.

The expression invalidate single t i represents invalidating an individual register i
from an ALAT t. Using invalidate single may also invalidate other registers.

`def(¬(t j).valid =⇒¬(invalidate single t i j).valid)∧
((invalidate single t i j).valid =⇒ i 6= j∧ invalidate single t i j = t j)

[invalidate single def]

The operation invalidate multiple t a s has the effect of invalidating in ALAT t all
those registers loaded from regions that overlap the region with address a and size s.
Other entries may also be invalidated as a result of this operation.

`def(¬(t i).valid =⇒
¬(invalidate multiple t a s i).valid)∧

((invalidate multiple t a s i).valid =⇒
¬overlapped (t i).addr (t i).sz a s∧ invalidate multiple t a s i = t i)

[invalidate multiple def]

Further ALAT Freedoms: An ALAT has the freedom to lie, in a conservative way,
about the information it records. An ALAT may report that a register contains invalid
data, even when it records that the data is valid. A subsequent query about the register
may correctly answer that the data is valid. To model this behavior, we need another
function to check the validity of a register.

`defcheck x t i =⇒ (t i).valid [check def]

The important features of check are as follows:

– If check reports that a register is valid, then it really is valid.
– The value returned by check depends, in an unspecified way, on a variable x that

represents an abstraction of the entire machine state.

3.5 The Machine State

The whole machine is modeled as a record of the components described thus far:

state
def= �ip:num; – instruction pointer

mem:word → word; – data memory
grfile:grindex → register; – general purpose register file
prfile:prindex → bool; – predicate register file
alat:grindex → alat entry; – advanced load address table
unknown: ind� – other unknown state

Two components of the state record were not previously alluded to. The instruction
pointer ip stores the location of the current instruction in a separate instruction memory.
The unknown field represents an abstraction of the other aspects of the state of an IA-
64 that are not modeled here. Its purpose is to serve as an argument to under-specified
functions where the result may depend on things other than those components of the
state that have been modeled concretely. The type ind is used for unknown because
little is known about it, except that it is large enough to encode a representation of the
complete machine state.

4 IA-64 Instruction Semantics

To verify the optimizations presented in Sect. 2 we need to model the effect of executing
an IA-64 program until a particular point in the code is reached. We will model the
outcome of doing this with a new type outcome.

outcome
def= STATE state – reaches nominated state
| FAULTfault – faults before reaching nominated state
| ⊥ – neither faults nor reaches nominated state

The type fault describes IA-64 faults visible to applications programmers (i.e., page
faults are not included).

fault
def= NAT CONSUMPTION | ILLEGAL OPERATION . . .

The meaning of each IA-64 instruction can be specified as a function from an initial
state to an outcome. An example giving the definition of the advanced load instruction
can be found in Fig. 3. The form of the definition is similar to that of the C pseudo code
that defines this instruction in the architecture guide [6]. A type encompassing all IA-64
instructions can now be defined.

p: predicate
s: size of data to load
r1: destination register
r2: register with source address
σ : initial state

`def ld a p s r1 r2 σ =
let addr = reg read σ .unknown σ .grfile r2 in
let data = mem read σ .mem addr.val s in

if ¬pred read σ .prfile p then
STATE σ

else if ¬reg valid dest r1 then
FAULT ILLEGAL OPERATION

else if addr.nat then
FAULT NAT CONSUMPTION

else if ¬mem valid source addr.val s then
FAULT ILLEGAL LOAD

else if mem seq addr.val s then
STATE σ with

�grfile:= reg write σ .grfile r1 �val:= 0;nat:= F�;

alat:= invalidate single σ .alat r1�

else
STATE σ with

�grfile:= reg write σ .grfile r1 �val:= data;nat:= F�;

alat:= validate σ .alat r1 addr.val s�

Fig. 3. Meaning of the advanced load instruction

inst
def= LD prindex size grindex grindex
| LD A prindex size grindex grindex
| LD S prindex size grindex grindex
| CHK A prindex grindex num
...

Assuming that we have a complete set of instruction meanings in the style of Fig. 3,
we can define a function mapping instructions to their meaning.

`def [[LD p s r1 r2]] = ld p s r1 r2∧
[[LD A p s r1 r2]] = ld a p s r1 r2∧
. . .

[inst sem def]

Some actions are common to all instructions and are therefore factored out. In par-
ticular, each instruction should advance the instruction pointer and change the unknown
component of the state in some unspecified way. We define a function to return the un-
known component of the next state, based on the current state σ and the instruction i.
This function is completely unspecified.

`defnext unknown σ i = x =⇒ T [next unknown def]

We can now define a function step to advance the execution of a program in an in-
struction memory p by one step. Should an instruction cause a fault, step will make no
further progress.

`defstep p (STATE σ) =
[[p σ .ip]](σ with �ip:= σ .ip+1;

unknown:= next unknown σ (p σ .ip)�)∧
step p (FAULT f) = FAULT f

[step def]

4.1 Execution Sequences

The examples presented in Sect. 2 compare two programs by posing the question: Is
the effect of one program when executed until it reaches some nominated instruction
the same as that of another program when it is executed until it reaches a nominated
instruction? To answer this question, we need to formalize what it means to execute a
program until a nominated instruction is reached.

The first thing to note is that some executions of a program will raise faults, and
therefore never reach a particular target instruction. To be more precise then, we are
interested in what it means to execute a program until some nominated instruction is
reached or a fault is raised. If l is the location of the instruction we are interested in,
then the predicate at or fault l describes those outcomes where we have reached our
goal.

`defat or fault l (STATE σ) = (σ .ip = l)∧
at or fault l (FAULT f) = T

[at or fault def]

A program may contain loops, so during its execution it may execute the same
instruction many times. When we talk about executing a particular program until a given
instruction is reached, we are interested in the first time that instruction is reached. It
simplifies the formalization to introduce a binder function that captures the concept of
being ‘the first.’ We introduce the notation ‘ε1n·P n’ to represent the first number for
which P holds. For example, (ε1n·n > 10) is 11.

`def(∃n·P n) =⇒
P (ε1n·P n)∧ (∀m·m < (ε1n·P n) =⇒¬P m)

[ε1 def]

Using ε1, we can define the expression (f until P) o to represent repeatedly apply-
ing the function f to o until some desired outcome, characterized by P, is reached. This
expression yields ⊥ if the desired outcome can never be reached.

`def(f until P) o = if (∃n·P (f n o)) then f (ε1n·P (f n o)) o else⊥ [until def]

We can now phrase as follows the meaning of ‘executing the program in p until the
instruction at l is reached.’

(step p) until (at or fault l)

4.2 Reasoning about until

The following theorem allows us to reason about IA-64 programs using a form of sym-
bolic simulation within the theorem prover. It allows us to take repeated steps in the
program until we reach the desired outcome.

` ((step p) until (at or fault l)) (STATE σ) =
if σ .ip = l then

STATE σ

else
((step p) until (at or fault l)) (step p (STATE σ))∧

((step p) until (at or fault l)) (FAULT f) = FAULT f

[until step thm]

The proof of this theorem follows from a more general property of ε1.

` ¬P 0∧ (∃n·P n) =⇒ (ε1n·P n) = (ε1n·P (n+1))+1 [first suc thm]

5 Equivalent Behavior

We now need to consider what it means for two programs to be equivalent. It may be
too strong a requirement to insist that the behavior of an optimized program be identical
to that of the original code. For example, consider the two programs presented in Fig. 2.
If the address in register r1 is not a valid destination, then both these programs will
raise an ILLEGAL STORE fault. Similarly, if the address in register r4 is not a valid
source, then both will raise an ILLEGAL LOAD fault. If both these conditions hold then
the unoptimized code will raise an ILLEGAL STORE fault and the optimized code will
raise an ILLEGAL LOAD fault. Nevertheless, we might still consider these programs
to be equivalent. More precisely, we will consider the behavior of two programs to be
equivalent when they both raise faults, without insisting that they raise the same fault.
Equivalence of behavior will therefore be defined on outcomes rather than simply being
defined on states.

The programs shown in Fig. 1 are even more problematic. In the case where predi-
cate register p1 holds false then their behavior is the same, but when p1 holds true then
the optimized code writes data to register r9 where the unoptimized code does not. This
will be a problem unless r9 is a scratch register, the contents of which are not of ongo-
ing interest. Assuming that is the case, our notion of equivalence needs to be broadened
to encompass programs with identical behavior across a nominated set of interesting
registers.

We begin by defining an equivalence relation on register files that holds if some
initial region of the register files are the same.

`def(f1 ∼=n f2) =
n ≤ sof ∧ (∀i x1 x2· i < n =⇒ reg read x1 f1 i = reg read x2 f2 i)

[grfile eq def]

The following properties are important when reasoning about register files.4

` f ∼=n f [grfile eq refl thm]

4 The equivalence relation ∼=n is also symmetric and transitive as expected, but these properties
are not used in the proofs described here.

` (i ≥ n) =⇒
((reg write f1 i v)∼=n f2) = (f1 ∼=n f 2)∧
(f2 ∼=n (reg write f2 i v)) = (f1 ∼=n f 2)

[grfile eq above thm]

Having defined an equivalence relation on register files, we can now define one on
execution outcomes.

`def(STATE σ1 ∼=n STATE σ2) =
(σ1.mem = σ2.mem∧σ1.grfile∼=n σ2.grfile∧σ1.prfile = σ2.prfile)∧

(STATE σ ∼=n FAULT f) = F∧
(STATE σ ∼=n ⊥) = F∧
(FAULT f ∼=n STATE σ) = F∧
(FAULT f1 ∼=n FAULT f2) = T∧
(FAULT f ∼=n ⊥) = F∧
(⊥∼=n STATE σ) = F∧
(⊥∼=n FAULT f) = F∧
(⊥∼=n ⊥) = T

[outcome eq def]

6 Example Proof

We can now return to a formal examination of the examples given in Sect. 2. We will
consider only the example using data speculation, as its proof is the more challenging.
We begin by specifying two instruction memories containing the original and optimized
versions of the code from Fig. 2. Note that all instructions in these programs are uncon-
ditional, and hence predicated on register 0.

`deforiginal 1000 = ST 0 2 1 2∧
original 1001 = LD 0 4 3 4

[original def]

`defoptimized 2000 = LD A 0 4 3 4∧
optimized 2001 = ST 0 2 1 2∧
optimized 2002 = CHK A 0 3 4000∧
optimized 4000 = LD 0 4 3 4∧
optimized 4001 = BR 0 2003

[optimized def]

The problem can now be stated as follows:

(STATE σ1 ∼=5 STATE σ2)∧
reg valid source 1∧ reg valid source 2∧ reg valid source 4∧
σ1.ip = 1000∧σ2.ip = 2000 =⇒

(step original) until (at or fault 1002) (STATE σ1)∼=5
(step optimized) until (at or fault 2003) (STATE σ2)

Note that equivalence between the executions can be proved only when the source reg-
isters are valid, as reading invalid registers returns unspecified results. Note also that the
problem has been phrased using constant register names. We could also use variables
to model symbolic register names, provided we add further assumptions asserting that
the variables hold distinct values.

To start the proof, we substitute concrete records for the states σ1 and σ2. The
assumptions allow us to select records with many common fields. We then separate out
those assumptions that remain of interest, yielding the goal below:

• r1 ∼=5 r2
• reg valid source 1 • reg valid source 2 • reg valid source 4
(step original) until (at or fault 1002)

(STATE �ip:= 1000;mem:= m;grfile:= r1;

prfile:= p;alat:= a1;unknown:= x1�)∼=5
(step optimized) until (at or fault 2003)

(STATE �ip:= 2000;mem:= m;grfile:= r2;

prfile:= p;alat:= a2;unknown:= x2�)

The records in this goal describe the symbolic state for both programs before any
instructions have executed. Since neither program has reached its target instruction,
we can use the theorems until step thm, step def and inst sem def (see Sect. 4) to
progress the symbolic execution of both programs as follows:

. . .
(step original) until (at or fault 1002)

((st 0 2 1 2) (STATE �ip:= 1001;mem:= m;grfile:= r1;

prfile:= p;alat:= a1;unknown:= x3�))∼=5
(step optimized) until (at or fault 2003)

((ld a 0 4 3 4) (STATE �ip:= 2001;mem:= m;grfile:= r2;

prfile:= p;alat:= a2;unknown:= x4�))

The values of the two unknown fields in the goal are actually expressions involving
the next unknown, the instruction, and the previous state. Since these fields contain no
useful information, it is clearer if we generalize the proof by replacing them with fresh
variables, as shown above.

The next step is to expand the definitions of st and ld a. The definition of ld a
was presented in Fig. 3. These, and other, IA-64 instructions are defined as a selection
among possible outcomes. We can use case analysis to reduce the resulting complex
goal, that compares two conditionally defined outcomes, to a collection of simpler goals
in which outcomes are compared under different premises. This step generates twenty
subgoals, of which the following is among the most interesting.5

5 The assumption r1 ∼=5 r2 has been used so that all reads refer to register file r2.

• r1 ∼=5 r2 • reg valid source 1
• reg valid source 2 • reg valid source 4
• reg valid dest 3 • ¬(reg read x3 r2 1).nat
• ¬(reg read x3 r2 2).nat • ¬(reg read x4 r2 4).nat
•mem valid dest (reg read x3 r2 1).val 2
•mem valid source (reg read x4 r2 4).val 4
•¬(mem seq (reg read x4 r2 4).val 4)
(step original) until (at or fault 1002)

(STATE �ip = 1001;

mem:=
mem write m (reg read x3 r2 1).val 2 (reg read x3 r2 2)

grfile:= r1;

prfile:= p;

alat:= invalidate multiple a1 (reg read x3 r2 1).val 2;

unknown:= x3�)∼=5
(step optimized) until (at or fault 2003)

(STATE �ip:= 2001;

mem:= m
grfile:=

reg write r2 3 �val:= mem read m (reg read x4 r2 4).val 4;

nat:= F�;

prfile:= p;

alat:= validate a2 3 (reg read x4 r2 4).val 4;

unknown:= x4�)

Here the execution of both programs has progressed by one instruction, without en-
countering a fault. The goal has also accumulated a number of assumptions that will
reduce the number of case splits needed for successive symbolic simulation steps. We
repeat this process until each outcome in every goal is reduced to either FAULT or a
STATE where the instruction pointer has reached the target. Each goal can then be re-
duced using outcome eq def (see Sect. 5). Because of the trivial equivalence of any
two faulting outcomes, only four goals remain unsolved by this process.

Of the four subgoals that remain after symbolic simulation, two can be discharged
by conditional rewriting with theorems about reading and writing registers and memory
(see Sect. 3). This could be done as part of each symbolic simulation step, but it is faster
if done just once at the end. The two remaining goals capture the heart of the problem,
they hinge on the behavior of the ALAT.

In the first goal we see both programs have written data to register 3. The original
program wrote the result of a read from memory, but the optimized program wrote the
value zero. This must be the result of the advanced load having failed, causing a zero
to be written, and the second load not having been performed. This should not happen,
and indeed there is a contradiction in the assumptions. We have assumed that a check
on register 3 in the ALAT succeeds, which is not possible since we have performed
the operation invalidate single on that register. This goal can be solved with the HOL
Light model elimination procedure, MESON TAC, using the ALAT definitions (see
Sect. 3.4).

. . .
• check x′

(invalidate multiple (invalidate single a2 3) (reg read x3 r2 1).val 2) 3
reg write r1 3 �val:= mem read . . . (reg read x3 r2 2) 4;nat:= F�∼=5
reg write r2 3 �val:= 0;nat:= F�

In the second case, both programs have loaded register 3 with four bytes read from
memory at the address held in register 2. However, the loads have been performed on
different memories. In the unoptimized code, the memory was first modified by writing
two bytes to the address held in register 1. The values loaded to register 3 will be
the same provided the memory regions read and written do not overlap. This fact is
embodied in an assumption of the goal.

. . .
• check x′′

(invalidate multiple (validate a2 3 (reg read x4 r2 4).val 4)
(reg read x3 r2 1).val 2) 3

reg write r2 3
�val:= mem read

(mem write m (reg read x3 r2 1).val 2 (reg read x3 r2 2).val)
(reg read x4 r2 4).val 4;

nat:= F�∼=5
reg write r2 3 �val:= mem read m (reg read x4 r2 4).val 4;nat:= F�

The assumption shown states that register 3 was set valid and associated with the mem-
ory region that was read. An invalidate multiple operation was then performed, invali-
dating all registers with data read from regions overlapping the region of memory that
was written. A check of register 3 then asserts that it is still valid, from which we can
deduce that the regions of memory read and written do not overlap. We can prove this
lemma using MESON TAC on the definitions of the ALAT operations. Once proved,
we can use it and the definition of mem write (see Sect. 3.1) to solve the goal.

Both the examples presented in this paper were proved using HOL Light, as have
other small examples using data speculation and transforming branching code into
straight-line code using predication. All the proofs had the same form as the one just
presented, in which the majority of the proof is completed by symbolic simulation and
rewriting. None required any more user interaction to complete than was needed for the
proof just presented.

7 Conclusion

This paper described a formal model for a significant portion of Intel’s forthcoming
IA-64 architecture. Theorems were proved about the model that allowed a symbolic
simulator to be built using the HOL Light theorem prover. This system can be used to
largely automate simple optimization proofs for assembly-level IA-64 code.

The scope of this research is intentionally limited. The problems considered are
small, staying at the level of individual optimizing transformations rather than proofs

about entire programs. Likewise the properties proved are modest, checking only for
equivalence between two similar programs rather than attempting to prove general cor-
rectness properties. By limiting the scope of the problem it was possible to find a solu-
tion that is largely automated. Indeed, the proofs could likely be more automated than
they already are. The motivation for this approach comes from hardware verification
where automated techniques with limited scope, like equivalence checking, have found
industrial markets where more general interactive techniques have fared less well.

8 Future Work

One class of optimization not addressed by the work described here is software pipelin-
ing of loops. In these optimizations the original loop is transformed into a new loop
where each cycle of the transformed loop executes instructions that correspond to steps
within the execution of several successive iterations of the original loop. The transfor-
mation reduces data dependencies between instructions within the loop, thereby hiding
the latency of the slower instructions. The term ‘software pipelining’ derives from an
analogy with hardware pipelining, where each cycle executes steps from several succes-
sive instructions. The IA-64 includes several features that actively support the software
pipelining of loops. We believe we can attack the problem of verifying transformations
that pipeline a loop by building on the framework presented here using techniques anal-
ogous to those used to verify the equivalence of unpipelined and pipelined hardware
implementations [1].

9 Related Work

In this paper we have demonstrated a system for verifying optimizing transformations
to IA-64 assembly code. Perhaps the most closely related work is that of the Refinement
Calculator project, which has built a general system to support program transformation
and refinement in HOL [2, 10]. The work here differs from that in the following ways:

– Here we have worked with an unstructured assembly-level language, where as the
Refinement Calculator (and similar transformation systems) manipulates structured
programs.

– The work here has pursued a high degree of automation using symbolic simulation,
where as systems like the Refinement Calculator usually focus on supporting a
user-guided interactive style of reasoning.

Acknowledgements

This research was performed while the author was visiting the Microcomputer Soft-
ware Laboratory of the Intel Corporation. Financial support was supplied by the Intel
Corporation and the Australian Research Council. The author would like to thank John
Harrison for his encouragement, support in visiting Intel, and his help with using HOL
Light. Valuable feedback was provided by the anonymous referees.

References

1. Jerry R. Burch and David L. Dill. Automatic verification of pipelined microprocessor con-
trol. In David L. Dill, editor, Computer Aided Verification: Proceedings of the 6th Inter-
national Conference (CAV’94), volume 818 of Lecture Notes in Computer Science, pages
68–80, Stanford, California, June 1994. Springer-Verlag.

2. Michael Butler, Jim Grundy, Thomas Långbacka, Rimvydas Rukšėnas, and Joakim von
Wright. The refinement calculator: proof support for program refinement. In Lindsay
Groves and Steve Reeves, editors, Formal Methods Pacific’97: Proceedings of FMP’97, Dis-
crete Mathematics and Theoretical Computer Science, pages 40–61, Victoria University of
Wellington, New Zealand, March 1997. Springer-Verlag.

3. Carole Dulong. The IA-64 architecture at work. Computer, 31(7):24–32, July 1998.
4. Mike Gordon. A formalization of a simplified subset of the Alpha shared memory model.

http://www.cl.cam.ac.uk/Research/HVG/FTP/FTP.html#papers.
5. John Harrison. The HOL Light Manual. University of Cambridge, Computer Laboratory,

New Museums Site, Pembroke Street, Cambridge CB2 3QG, England, edition 1.0, May
1998.

6. Intel. IA-64 application developer’s architecture guide. Order number 245188, Intel Corpo-
ration, Santa Clara CA, USA, May 1999.

7. Robert Brent Jones. Applications of Symbolic Simulation to the Verification of Microproces-
sors. PhD thesis, Stanford University, Department of Electrical Engineering, 161 Packard,
350 Serra Mall, Stanford CA 94305, USA, August 1999.

8. Michael Norrish and Konrad Slind. The HOL System Description. University of Cambridge,
Computer Laboratory, New Museums Site, Pembroke Street, Cambridge CB2 3QG, Eng-
land, hol98 Taupo-2 edition, February 2000.

9. SPARC International. The SPARC Architecture Manual. Prentice-Hall, New Jersey, 8th
edition, 1992.

10. Joakim von Wright and Kaisa Sere. Program transformations and refinements in HOL. In
Myla Archer, Jeffrey J. Joyce, Karl N. Levitt, and Phillip J. Windley, editors, The HOL The-
orem Proving and its Applications: International Workshop, pages 231–239, University of
California at Davis, August 1991. ACM-SIGDA, IEEE Computer Society Press.

