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Mesh Simplification Using Quadric Error Metrics 
 

Core Tasks 
 

• Implement the QEM algorithm[1] and Construct suitable data structures. 
• Test the algorithm with simple meshes. 

 
Extra 

• Implement the evaluation metric to evaluate the approximations. 
• Test the algorithm with complex meshes 
• Experiment and build level of details hierarchy for the meshes. 
• Try other strategies to compute the merged vertex when the matrix is not invertible.  

 
Implementation Details 
 
1. Programming Language and Libraries: 

• Python 3.7  
• Numpy, Scipy, GL 
• Meshplot 

 
2. Data structures & Class Design: 
 

Class Name Variables Functions 

Vertex v:  the (x,y,z) values of the 
vertex 

add_face:  push a neighbor face 
into neighborF 

neighborF:  the neighbor faces 
around the vertex  

neighbor_vertices:  return the 
1-ring neighbor vertices 

K:  the vertex’s 𝐾! matrix Update:  update the 𝐾! matrix 
and neighbor faces after we 
merged an edge 

Edge S:  the start vertex Compute_cost:  compute the 
cost of this edge T:  the terminal vertex 

Cost:  the cost of this edge 

CostHeap Heap: a heap dictionary which 
use an edge as key, and the 
edge’scost as value 

Push:  push an edge to the heap 

Pop:  pop out the edge with 
minimum cost from the heap 
Update:  update the other 
edges in the heap after we 
popped out the minimum edge 
Delete:  delete an edge from 
the heap 
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Class Name Variables Functions 
QSlim V_dict: holding all Vertex() of 

the current mesh.  
Simplify: simplify a mesh with a 
given ratio using QEM algorithm 

E_dict: holding all Edge() of the 
current mesh. 

Compute_loss: compute the 
loss between the current mesh 
and the original mesh 

HQ: a CostHeap() object Plot_simplify: plot the 
simplified meshes 

Current_Ratio: the ratio 
between the current #of 
vertices and the original 

Reload: reload the origin mesh 
from the file 

 
 
QEM Algorithm Outline 
 

1. Compute the 𝑄" matrices for all the initial vertices. 
2. Select all valid vertex pairs. 
3. Compute the optimal 𝑣	for each pair, 𝛥(	𝑣	) becomes the cost of contracting that pair. 
4. Place all the pairs in a heap keyed on cost with the minimum cost pair at the top. 
5. Iteratively remove the pair (𝑣#, 𝑣$)	of least cost from the heap, contract this pair, and update 

the costs of all valid pairs involving the new vertex 𝑣. 
 
 
Evaluate the Loss of the Mesh Simplification 
 
In order to evaluate the quality of the algorithm’s output numerically without bias, we need a more 
rigorous error measurement rather than just sum up the edge costs. I randomly sampled two sets of 
vertices 𝑋% 	𝑎𝑛𝑑	𝑋& on the input mesh 𝑀%  and the output mesh 𝑀& respectively (we can do this by 
randomly sample barycentric coordinates on the faces). The paper[1] introduced a metric which 
measures the average squared distance between the approximation and the original model. This is very 
similar to the 𝐸'%() energy term used by Hoppe et al. [2]: 

    
 

The distance 𝑑(𝑣,𝑀) = 𝑚𝑖𝑛*∈,‖𝑣 − 𝑓‖ is the minimum absolute distance from 𝑣 to the closet face of 
𝑀. We can compute this by taking the dot product of the face’s plane parameters with 𝑣’s 
homogeneous coordinates. This metric evaluation is used for evaluation purpose only; it’s not part of 
the algorithm (maybe because of the running cost). In my project, I randomly sampled 10000 vertices on 
each meshes. 
 
Drawback: 
I noticed one drawback of this evaluation method. Because of the randomness of the vertices sampling, 
the 𝐸%  may not increasing as the mesh’s resolution decreasing. Take the result of Stanford Dragon as 
example, when the vertices number decreased from 2500 to 500, the 𝐸%  decreased from 0.207 to 0.19 
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which is not theoretically correct. (However, this may be caused by the differences on implementation, 
the paper didn’t mention too much details about the implementation). 
 
 
 
Simple Meshes 
 

Sphere 

   
Origin Mesh 
V = 162, F = 320 

𝐸% = 2.61 
V = 81, F = 158 

𝐸% = 2.9 
V = 16, F = 28 

 
 
 
 
 
 
Cow 

   
Origin Mesh 
V = 4583, F = 5804 

𝐸% = 0.103 
V = 1145, F = 2288 

𝐸% = 0.107 
V = 229, F = 448 
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Teddy 

   
Origin Mesh 
V = 1598, F= 3192 

𝐸% = 2.56 
V = 399, F = 794 

𝐸% = 3.18 
V = 79, F = 154 

   
Bunny  (Simplified version from graphics.stanford.edu) 

   
Origin Mesh 
V = 2503, F= 4968 

𝐸% = 0.0208 
V = 625, F = 1227 

𝐸% = 0.0222 
V = 125, F = 238 

 
 
Complex Mesh 
 

Torus 

 
  

Origin Mesh 
V = 4096, F= 8192 

𝐸% = 0.0126 
V = 1024, F = 2048 

𝐸% = 0.0166 
V = 204, F = 408 
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Stanford Dragon 

   
Origin Mesh 
V = 50004, F= 100000 

𝐸% = 0.178 
V = 25002, F = 49992 

𝐸% = 0.180 
V = 12501, F = 24792 

   
𝐸% = 0.186 
V = 5000, F = 9942 

𝐸% = 0.207 
V = 2500, F = 7376 

𝐸% = 0.19 
V = 500, F = 920 

 
 
Level of Detail Hierarchy  
 
Level of Detail hierarchy is important for the video game rendering process with high-resolution meshes 
such as Stanford Dragon. In order to build a LoD hierarchy, I have to define a variable to control the 
extent of the simplification. There are three basic attributes of a mesh can be used as a target value of 
simplification: numbers of vertices, faces and edges. Before I made the choice, I researched the 
relationship between these three attributes in triangle meshes. 
 
Half Edge[3] 

One important new definition is half edge. Usually in the triangle meshes, one edge only has 2 
side faces. So, we define a half edge by an edge and one of its side faces. And obviously one 
triangle is bounded by 3 different half edges. If the mesh has 𝑉 vertices 𝐸 edges and 𝐹 triangle 
faces, the total number of half edges is: 

2𝐸 = 3𝐹  
 
Euler’s Formula[3] 

Another important theorem is Euler’s formula for triangle meshes: 
𝑉 − 𝐸 + 𝐹 = 2(1 − 𝑔) 
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Where 𝑔 ∈ 𝑁 is the genus of the mesh, genus is usually a very small number which is the 
number of ring shape handles in the mesh (e.g. Doughnuts shape has 1 genus). So 
approximately: 

𝑉 − 𝐸 + 𝐹	 ≈ 0 
 
Using the equation of half edge, if I substitute  𝐸 by -

$
𝐹: 

F ≈ 2V 
If I substitute  𝐹 by $

-
𝐸 : 

𝐸 ≈ 3𝑉 
 
Therefore 𝑉, 𝐸	𝑎𝑛𝑑	𝐹 are approximately related. It’s also a reason for OBJ files’ design since the total 
amortized storage required per triangle will be reduced if we let the vertices shareable. 
 
Then I can look at some other advantages of these variables. The edge is an unusual data in rendering 
process and storage, I exclude it first. 
 
Number of Vertices 

• Easy to acquire in each iteration of QEM algorithm. 
• Related to the storage space of 3D mesh. 
• Hard to expect the rendering cost. 

 
Number of Faces 

• Related to the run-time of rendering process directly 
• But need to re-compute in each iteration of QEM algorithm 

 
In order to reduce the run-time of QEM algorithm during the testing, I used number of vertices as the 
target value for LoD hierarchy. 
 
Contraction Strategy 
 
In the QEM algorithm, sometimes the 𝑄 Matrix may not be invertible then we cannot find a solution for 
the new vertex �̅�. In this situation, use the midpoint of the contracted edge as the replacement is the 
most convenient way. I also tried another strategy which is uniformly sampled 100 vertices on the 
contracted edge then choose the sample with the minimum cost. 
 

Mesh  Num of V / F Midpoint 
(𝐸!) 

Optimal 
(𝐸!) 

Error  
Reduction 

Midpoint 
Runtime (s) 

Optimal 
Runtime(s) 

% Runtime 
Increasing 

Cow 1145 / 2288 0.111 0.0995 10.4% 60.7 65.1 7.25% 
572 / 1142 0.116 0.1 13.8% 20.9 21.7 3.83% 
45 / 68 0.176 0.131 25.6% 16.7 17.5 4.80% 

Bunny 1251 / 2476 0.0231 0.0219 5.2% 42.2 45.2 7.11% 
625 / 1228 0.0237 0.0214 9.7% 25.3 25.8 1.98% 
237 / 361 0.0242 0.0226 6.6% 12.4 12.9 4.03% 

Notice: The later simplified meshes are generated from the previous one; Therefore, the runtime was decreasing as the 
number of vertices decreasing.   
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Based on the table above, I noticed that the error reductions of my sampling strategy aren’t obviously. 
Maybe I should increase the number of sampling or try other methods. However, the extra run-time 
cost also not significant.  
 
In my opinion, the fixed midpoint strategy generated good visual look for the simplified meshes already. 
Also, this strategy doesn’t require too much runtime cost. So, it’s a quality-time trade based on the 
platform and the users’ requirements. 
 
Since the new vertex selection only happened when we are pushing the edges to the heap or updating 
the edges in the heap after popping, one solution can be setting a threshold for the number of the 
updating edges: 
 
𝑇 = 10 
𝑢𝑝𝑑𝑎𝑡𝑒𝑄𝑢𝑒𝑢𝑒 = 𝑡ℎ𝑒	𝑒𝑑𝑔𝑒𝑠	𝑤𝑎𝑖𝑡𝑖𝑛𝑔	𝑓𝑜𝑟	𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔 
𝑖𝑓	𝑙𝑒𝑛(𝑢𝑝𝑑𝑎𝑡𝑒𝑄𝑢𝑒𝑢𝑒) > 𝑇: 
 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = 𝐹𝑖𝑥𝑒𝑑𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡	() 
𝑒𝑙𝑠𝑒: 
 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = 	𝑂𝑝𝑡𝑖𝑚𝑎𝑙() 
𝑓𝑜𝑟	𝑒	𝑖𝑛	𝑢𝑝𝑑𝑎𝑡𝑒𝑄𝑢𝑒𝑢𝑒: 
 𝐻𝑒𝑎𝑝. 𝑢𝑝𝑑𝑎𝑡𝑒(𝑒, 𝑐𝑜𝑠𝑡 = 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦(𝑒)	) 
 
What I learned: 
 

1. What is mesh simplification, why mesh simplification important for some industry such as video 
game production (Level of Detail, hardware adaption). 

2. How to implement QEM algorithm, how to choose the suitable data structure for geometric 
algorithm.  

3. How to evaluate the mesh approximation (definition of 𝐸%). 
4. The design of OBJ file (shareable Vertices array, vertices normal, faces). 
5. How to use python to processing and visualizing 3D mesh data (Conda libraries).  
6. The Euler’s formula and the relation between triangle mesh’s # of V,F,E 
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Source of mesh models: 

• OpenGL https://github.com/McNopper/OpenGL 
• graphics.stanford.edu 
• Clara.io: https://clara.io/library 


