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Preface
These are course notes for the University of Waterloo course Computer Science 779

(Splines and Their Uses in Computer Graphics). They are a companion to my monograph
“A Blossoming Development of Splines.” The monograph contains basic material about
splines, while these course notes contain additional material not covered in the monograph,
as well as the details.

Stephen Mann
Waterloo
December 2009



Chapter 1

Administration

1.1 People

Instructors: Stephen Mann DC 2106 x34526 smann@uwaterloo.ca
Office Hours TBA

1.2 Resources

Texts: A Blossoming Approach to Splines,
by Stephen Mann, Morgan-Claypool, 2006

Curves and Surfaces for CAGD,
by Gerald Farin, fifth edition, Academic Press, 2001

Course Homepage: http://www.student.cs.uwaterloo.ca/˜cs779/
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References: Pyramid Algorithms,
by Ron Goldman, Morgan Kaufmann, 2003

Curves and Surfaces in Geoemtric Modeling,
by Jean Gallier, Morgan Kaufmann, 2000

A Practical Guide to Splines, Carl de Boor.

An Introduction to Splines,
Richard Bartels, John Beatty, and Brian Barsky.

Fundamentals of Computer Aided Geometric Design,
Josef Hoschek and Dieter Lasser.

Blossoming: A connect the dots approach to Splines,
Lyle Ramshaw.

The last is a DEC SRC technical report. It has been scanned and is available on the web
http://research.compaq.com/SRC/publications/src-rr.html as SRC-019. I have also
made a local copy:

http://www.cgl.uwaterloo.ca/~smann/Papers/SRC-019.pdf

1.3 Background

To take this course, you should have a reasonable background in mathematics. In particular,
I will assume you know the basics of linear algebra, and have the mathematical sophistication
to understand new ideas when they are introduced.

The assignments will be C programming using fltk for the user interface. You are free to
use Java instead, but sample code will only be provided for fltk/C++. While you can easily
learn the required fltk needed for the assignments (we don’t use much of it), you will have
troubles if you do not know C or C++.

One extra caution: it should be possible to do the programming assignments for curves
on linux, Windows, Mac, or Android although the provided code is primarily for linux and
Android. However, for the surface portion of the course at the end, I provide a polygon
viewer that only works on linux. This viewer is available for download to linux machines,
and is on the machines in MC 3007 (the undergrad graphics lab) which you’ll be able to
login to. While you aren’t required to use my polygon viewer, if you do not have a way to
view polygons (with surface normals!) on your machine, then you’ll have great difficulties
unless you have some linux background and can use the machines in MC 3007..
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1.4 Course Goals

The main goal of the course is to give students an understanding of splines, including Bézier
and B-spline curves and surfaces. A further goal is to do so in a geometric way, and to
develop your geometric intuition and reasoning.

1.5 Marking

The grade will be based on homeworks (60%) and a final project (40%). The homeworks
will be part theoretical and part programming. The purpose of your project will be to learn
something and show what you learned.

Note that 20% of your mark on the homeworks and on the final project will be based on
the quality, clarity, and conciseness of your exposition.

1.5.1 Audit Credit

If you wish to take the course for audit credit, you will be expected to do the non-starred,
non-programming questions on the assignments but you do not have to do a final project.
For assignments that are only programming questions and/or starred questions, students
taking the course for audit credit do not have to submit anything.

1.6 Assignments

There are eight assignments. While the points for each problem are noted on the assignment,
20% of the mark will be awarded for presentation. Thus, your writeups should be clear,
concise, and easy to understand.

Note that it is NOT the case that each assignment is worth 7.5% of your grade; instead,
the sum of the points on all five assignments is worth 60% of your grade.

Late assignments are accepted up until the lecture in which I discuss the assignment
(usually the lecture following the due date). However, a penalty of 1 point per day late will
be assessed.

The assignments and their due dates will be posted on the course webpage.

1.7 Project

The course notes describe the final project. You will either give a demonstration or a talk
for your project, either of which will be open to the entire class. The project is worth 40% of
your grade; 5% will be based on a project proposal presentation you give about your project
to the class, and 35% is for the project itself.

The project proposal presentations will be in mid- to late-March. The structure of your
proposal should be similar to the following:
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• Introduction (problem statement, etc.)

• Discussion (mathematical details about the problem, etc.)

• Proposal (what you intend to do, what you expect to learn).

1.8 Exams

There are no exams for this course.

1.9 Documentation

Documentation for various things can be found in the course web page.

1.10 Data

Data files needed for the assignments can be found in the course web page.
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1.11 Project

Your final project in this course will be on a CAGD topic of your choosing. Your project is
due by the last day of examinations (although I might extend this a bit). You will need to
arrange a time with the instructor for giving your presentation.

You have two choices: you can choose an implementation project or a written project.
Both will have a presentation component open to the rest of the class. For a written project,
this involves giving a talk on the subject you research. For an implementation, this probably
consists of a demonstration of your project, although for some implementations, a talk might
be more appropriate.

The following are ideas for projects:

• Surface

– Subdivision Surfaces

– Polynomial Least interpolation

– C1 surfaces via the hyperbolic plane (“Topological Design of Sculptured Surfaces,”
Ferguson, Rockwood, Cox, SIGGRAPH 1992)

– Functions over the Sphere (Schumaker, CAGD June 1996)

– N-side patches via Base Points (Warren)

– S-patches (Loop, ACM TOG, July 1989)

– Sabin patches (plus 1 level of subdivision) (Sabin, Eurographics 1983(?))

– Zheng-Ball patches (plus 1 level of subdivision)

• User Interfaces

– Surface Pasting (Bartels et al)

– Free-form deformations (SIGGRAPH, Sederberg 86, Hsu 1992)

– Hierarchical B-splines (Bartels, Forsey)

• Other

– Wavelets

• Hard stuff

– T-NURBS, etc., (Sederberg, SIGGRAPH 2003)

– A-patches (Bajaj, ACM TOG April 1995)

– Triangular B-splines (Seidel)
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The point of the project is for you to learn a CAGD topic on your own. Thus, if I’m
satisfied with what you learned, you will receive an 65 for your project. To get above an 65,
you will need to go beyond learning something in the literature. To get a mark above a 90
on your project, you would need to do some research.

A paper project would require looking at several papers, and synthesizing the ideas in
these papers. In particular, you would want to address the following questions:

• How do the ideas in the papers compare?

• Which is better?

• What overlap do the papers have?

• Can ideas from multiple sources be combined to produce something better?

• What are the next research steps?

To get a project mark above 90, you would need to actually do some of the next research
steps.

For an implementation project, things that will push your project mark above 65 include

• Running experiments to test the ideas that you studied.

• Use your project to build nice models, etc.

• Implement and merge several ideas. Note: The ideas should be significantly different
to get marks for this, although you could get experiment marks for implementing two
similar ideas and comparing them via experimentation.

To get a project mark above 90, you would have to implement something new (which probably
means deriving something new).

Note also that you will not get any project marks for learning any CS488/688 material.

1.11.1 Project proposal

You will give a short talk about your proposed project. You have three objectives for your
presentation:

1. Presentation of the high level ideas. What is the general topic you will be working on?
It is not expected that you will give many details about it (you won’t have learned it
yet and you won’t have time in this presentation), but you should be able to convey
the general idea.

2. What you plan to do for your project — the basics that you will implement (or study)
and ideas for extras.

3. Staying within your time limit. There is a 1 point per minute penalty for going over-
time. You should rehearse your presentation to get within the time limit.

If you need any audio-visual support for your presentation, you should let the instructor
know at least 1 day (and preferrably more) in advance.
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1.11.2 What to hand in — implementation project

You give me (at your demo) a 1 page summary of your project. I will use this page to make
notes during your demo to decide what you should get points for. So on this one page, you
should tell me what you learned, and tell me what you feel I should give you marks for.
“Point form” is preferred here. You should also give me the URL for project your web page
(described in the next paragraph).

You should also write a short web page (about 1–3 pages when printed) describing your
project with pictures. Further, if you do any experiments, give a short writeup of what the
experiment is and of the results of the experiment. Be sure to include a bibliography listing
the main sources for your project.

You may combine the 1 page summary that you give me at your demo with your web
page, and base your web page around this summary.

1.11.3 What to hand in — writing project

Your writeup should be 5–10 pages, with an extra sheet saying what you learned and what
you deserve marks for. In your presentation, you do not need to say what you deserve marks
for; rather, you should present the highlights of the paper you have written.
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Chapter 2

Polynomial Curves and Surfaces

See “A Blossoming Development of Splines”

15
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Chapter 3

Debugging

Debugging splines is pretty much like debugging anything: you trace the execution of your
code on known input and check that you’re getting the desired output. Indexing and off-by-
one errors causes many problems, so tracing loop indices is also helpful. A few observations
can be made as to some simple checks that catch many of the errors.

3.1 Bézier Curves

de Casteljau’s algorithm is reasonably easy to debug. The main concern is going through
loops too many or too few times. The simplest checks involve using a curve with control
points of (0,0), (2,0), (4,0), (6,0) and evaluating at t = 0.5. At the intermediate steps, you
should get the points (1,0), (3,0), (5,0), and then (2,0),(4,0), and finally (3,0), since your
blending weights should be 0.5,0.5 when t = 0.5.

A second check is to evaluate the curve (0,0), (3,0), (6,0), (9,0) at t = 1/3. Then your
intermediate points should be (1,0), (4,0), (7,0), and then (2,0), (5,0), and finally (3,0).

3.2 B-splines

B-splines are harder to debug than Bézier curves due to the more complex indexing. A
simple first test is to set the knot vector to {0, 0, 0, 1, 1, 1} (or possibly {0, 0, 0, 0, 1, 1, 1, 1}),
in which case you should get a Bézier curve. After that, though, you should print the indices
into the knot vector and see that they match the recurrence formula.

3.3 Surface

The added complication in debugging triangular Bézier surface patches is the additional
index. The things to check are

• Make sure your barycentric coordinates are correct (they should sum to 1 if nothing
else).

17
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• Evaluation at the corner of the domain gives nice intermediate points, since they will
all be initial control points.

• Use a patch with constant z-value and xy-coordinates at uniformly spaces integer
locations, and evaluate at (a) the corner; (b) an edge midpoint; (c) at barycentric
coordinates (1/3,1/3,1/3).



Chapter 4

Miscellaneous Curve Topics

4.1 Convex Hull Root Finding

1. There are many methods for finding roots of polynomials. One due to Sederberg works
with univariate polynomials in the Berstein basis. The idea illustrated in the top row
of Figure 4.1. We compute the convex hull of the control polygon and find its left
most intersection with the x-axis. By variation diminishing, we know that the root
can’t lie to the left of this point on the x-axis, so we subdivide the curve at this point
(Figure 4.1, bottom left), and repeat the process until we get a root within our desired
tolerance (Figure 4.1, bottom right, where three steps were need to find the root to
within 10−4).

2. Unfortunately, as shown in Figure 4.2, the algorithm runs into problems when the curve
is nearly horizontal near the x-axis. Alternative methods must be used to handle cases
such as these.

3. Some additional notes:

(a) The algorithm can be used to find all roots of a polynomial in increasing order.
The idea is to find the left most root, then construct the polynomial with this
root removed and repeat.

(b) Note that one doesn’t actually need the entire convex hull: just one quarter of
the hull and often not even that. All that’s needed is the part of the hull from
the left most point to the x-axis.

(c) It appears that there are two cases that are needed: one when the left most control
point is above the x-axis and one when it is below the x-axis. But by negating
the y-values of the control points, one case can be converted to the other.

(d) The algorithm can be extended to compute the intersection of a ray with a tensor
product Bézier surface.

19
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Figure 4.1: Using the convex hull to compute roots of a polynomial.
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Figure 4.2: Examples of using the convex hull to compute roots of a polynomial to compute
the root to with 10−4.
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4.2 A Geometric Interpretation of Bézier Stability

Based on a talk by Helmut Pottmann,
4th Dagstuhl Workshop on Geometric Design

1. Bézier Curves:

Numerically stable over [0, 1] – what does this mean?

Floating point errors, data gathering errors

2. Given: two points P and Q, where P and Q have some error ε

Where will linear interpolation be relative to exact P and Q?

3. Mathematically:

(1− t)(P + ~p) + t(Q+ ~q) = (1− t)P + tQ+ (1− t)~p+ t~q

Error is maximized when ~p = ~q:

(1− t)P + tQ+ ~p

4. Linear interpolation does not magnify error

5. de Casteljau’s algorithm is repeated linear interpolation:
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6. Repeated linear interpolation does not magnify error

7. Over [0, 1], Bézier curves have good numerical properties

8. Error in curve is no greater than error in control points

9. Also true of B-spline basis

10. Monomials

f(x) =
n∑
i=0

aix
i = a0 · 1 + a1x+ a2x

2 + . . .

11. Geometric interpretation:

To form affine combination, note first basis function is 1

Therefore, first coefficient is point, rest are vectors

P (t) = P0 +
n∑
i=1

~vit
i

12. Error of ε in all coefficients:

P (0) has error of ε

P (1) has error of (n+ 1)ε

Bernstein Monomial

13. Error is magnified in monomial basis

Error worse for high degree

14. For extrapolation, connect lines from pairs of points in circles
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15. Error is linear with distance from midpoint

16. Extrapolation magnifies error

17. Repeated linear interpolation repeatedly magnifies the error

18. Bézier Curves Go Wild
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4.0 9.0
8.0

8.0
-.5

27.0
-1

64.0
-1.5

19. How Bad Is It Really?

• Error increase as O(dn), d = distance, n = degree

(distance is relative distance)

• Same big-O error regardless of basis

(but constant better in some bases than others)

• Degree 3: at 105, error of 10−16 increases to 1

• Degree 5: at 103, error of 10−16 increases to 1

• High degree unstable

• This error is in addition to any other floating point errors

• Relative vs Absolute error

10(1 + ε)xn

For n = 15, evaluate at 10.

Error is 1016ε(= 1), but value is 1016

• Worst case relative error may be acceptable

• Error may cancel

• Beware of 0’s at large values of t!

20. Any particular curve is well behaved
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Green are CPs for red curve

21. Start with 10−16 error, evaluate cubic at 10, error is 10−13

Probably good enough

4.3 Lane-Riesenfeld Algorithm

1. Lane-Riesenfeld Algorithm

• Quadratics: Replicate each control point, average twice.

P0 P0 P1 P1 P2 P2

P0 2
P0+P1

P1 2
P1+P2

P2

4
3P0+P1

4
P0+3P1

4
3P1+P2

4
P1+3P2

1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2

Original knots 0, 1, 2, 3

New knots 1/2, 1, 1.5, 2, 2.5

• For degree n > 2, average n times.

• How do we prove this?

(Goldman, Warren, 1993, induction, de Boor recurrence)

• Blossoming Lane-Riesenfeld - Quadratics Relabel quadratic triangle diagram with
blossom labels:
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f(0,1) f(0,1) f(1,2) f(1,2) f(2,3) f(2,3)

f(0,1) f(1,1) f(1,2) f(2,2) f(2,3)

f(1/2,1) f(1,1.5) f(1.5,2) f(2,2.5)

1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2

Original knot vector: 0,1,2,3

New knot vector: 1/2, 1, 1.5, 2, 2.5

2. Cubics

When we try with cubics...

f(0,1,2) f(0,1,2) f(1,2,3) f(1,2,3) f(2,3,4) f(2,3,4)

f(0,1,2) f(1,1.5,2) f(1,2,3) f(2,2.5,3) f(2,3,4)

f(.75,1,2) f(2.25,1,2) f(1.75,2,3) f(3.25,2,3)

f(1,1.5,2) f(?,?,?) f(2,2.5,3)

1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2

1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2

1/2 1/2 1/2

Rewrite...

f(?, ?, ?) =
1

4
f(1, 1.5, 2) +

2

4
f(1, 2, 3) +

1

4
f(2, 2.5, 3)

=
1

4
f(1, 1.5, 2) +

3

4

(2

3
f(1, 2, 3) +

1

3
f(2, 2.5, 3)

)
=

1

4
f(1, 1.5, 2) +

3

4
f(1.5, 2, 3) = f(1.5, 2, 2.5)

3. Quartics and Higher

Similar problem occurs with quartics

f(0,1,2,3) f(0,1,2,3) f(1,2,3,4) f(1,2,3,4) f(2,3,4,5) f(2,3,4,5)

f(0,1,2,3) f(1,2,2,3) f(1,2,3,4) f(2,3,3,4) f(2,3,4,5)

f(1,1,2,3) f(1,2,3,3) f(2,2,3,4) f(2,3,4,4)

f(1,2,2,3) ? f(2,3,3,4)

?? ??

1/2     

1/2    

1/2   

1/2  

1/2     

1/2    

1/2   

1/2  
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Solve in similar way

4. General Proof

• Uses explicit formula for interior nodes

• Uses induction

• Lots of
∑

s, lots of “n choose i”s

• 6 slides full of equations

5. Computational Comparison to uniform sampling with de Boor evaluations

(a) Does Lane-Risenfeld reduce evaluation costs?

Although there is a “quadratic” in degree amount of work done to compute the
first point in the refined control polygon, each additional point requires only a
linear amount of work as indicated by the three points circled in the cubic diagram
below:

O O O O O O

O O O O O

O O O O

O O O

     

    

   

     

    

   

To obtain a smooth approximation to the spline, we need to refine at least three
times for cubics. Each refinement roughly doubles the number of control points.
For cubics, the cost of the top level is 3 affine combinations; the middle level
is 1.5 affine combinations, and of the bottom level is 0.75 affine combinations
for a total of 5.25 affine combinations. Compare this to the de Boor algorithm,
which requires 6 affine combinations for each evaluation of the B-spline. Note also
that the de Boor weights are more expensive to compute than the 1/2 weights of
Lane-Riesenfeld.

(b) As the degree increases, the cost benefits of the Lane-Riesenfeld algorithm im-
prove, since the cost per sample point is O(n log n) while for de Boor it is O(n2),
with the de Boor algorithm having an additional cost to compute the weights.

(c) For low degree, the primary reason for choosing the Lane-Riesenfeld algorithm
is code simplicity. The de Boor algorithm allows you to handle non-uniform B-
splines, and gives more flexibility in the sampling density, etc. Further, there may
be memory access patterns that favor one algorithm over the other, and other
issues likely arise if making GPU implementations of the algorithms.
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6. Knots in Geometric Progression

Knots in Arithmetic Progression

• Original knots = {0,1,2,. . . }
• New knots = {0, 1/2, 1, . . . }

Knots in Geometric Progression

• Original knots = {1, β2, β4, . . .}
• New knots = {1, β, β2, . . .}

7. Quadratic Case

f(1,β2) f(1,β2) f(β2,β4) f(β2,β4) f(β4,β6)

f(1,β2) f(β2, (1+β)
β(1+β3)

) f(β2,β4) f(β4, (1+β)
β3(1+β3)

)

f(β,β2) f(β2,β3) f(β3,β4)

β    

β2   

1    

1   

Original knots = {1, β2, β4, . . .}
New knots = {1, β, β2, . . .}

8. Cubic Case

f(1,β2,β4) f(1,β2,β4) f(β2,β4,β6) f(β2,β4,β6) f(β4,β6,β8)

f(1,β2,β4) f(β2,β4, (1+β)
β(1+β5)

)f(β2,β4,β6)f(β4,β6, (1+β)
β3(1+β5)

)

f(β2,β4, (1+β)(1+β2)
β(1+β+β2+β5)

)                                   f(β2,β4, (1+β)(1+β2)
β3(1+β3+β4+β5)

)                                     f(β4,β6, (1+β)(1+β2)
β3(1+β+β2+β5)

)

f(β2,β3,β4) ???

β    

β2   

β3  

1    

1   

1  

Original knots = {1, β2, β4, . . .}
New knots = {1, β, β2, . . .}

9. No Proof for Geometric Progression Lane-Riesenfeld

• Everything is a lot messier in the geometric progression case
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• Straight forward to do Ron’s trick for cubic and quartic arithmetic progression
(we know appropriate weights exist)

• The formula for each node is a recurrence relation

Is there a closed form?

10. Can clean up quadratic case:

Switch Edge Labels from this...

f(1,β2) f(1,β2) f(β2,β4) f(β2,β4) f(β4,β6)

f(1,β2) f(β2, (1+β)
β(1+β3)

) f(β2,β4) f(β4, (1+β)
β3(1+β3)

)

f(β,β2) f(β2,β3) f(β3,β4)

β    

β2   

1    

1   

To this.

f(1,β2) f(1,β2) f(β2,β4) f(β2,β4) f(β4,β6)

f(1,β2) f(β2,β2) f(β2,β4) f(β4,β4)

f(β,β2) f(β2,β3) f(β3,β4)

β2    

β   

1    

1   

Doesn’t help for higher degree

11. Schaefer-Goldman have addressed at least some of the above issues:

(a) Given B-spline with arbitrary knot vector,

(b) Duplicate control points,

(c) At kth level (k = 1..d), insert knots uk−1, uk, uk, uk+1, uk+1, ...

As an example, we start with knot vector {t0, t1, t2, t3, t4, t5} and we want to insert
knots u0, u1, u2, u3, u4 with u0 < t0, t0 < u1 < t1, t2 < u2 < t2, ...

f(t0,t1,t2) f(t0,t1,t2) f(t1,t2,t3) f(t1,t2,t3) f(t2,t3,t4) f(t2,t3,t4) f(t3,t4,t5) f(t3,t4,t5)

f(t0,t1,t2) f(u1,t1,t2) f(t1,t2,t3) f(u2,t2,t3) f(t2,t3,t4) f(u3,t3,t4) f(t3,t4,t5)

f(u1,t1,t2) f(t1,u2,t2) f(u2,t2,t3) f(t2,u3,t3) f(u3,t3,t4) f(t3,u4,t4)

f(t1,u2,t2) f(u2,t2,u3) f(t2,u3,t3) f(u3,t3,u4) f(t3,u4,t4)

u0 u1 u1 u2 u2 u3 u3

u1 u2 u2 u3 u3 u4

u2 u3 u3 u4 u4
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Note that every other value (above the 0th layer) is copied from the previous layer
(rather than being an affine combination).

Note also that since this cubic B-spline is defined over the interval [t2, t3], the knots of
the refined B-spline will be {t1, u2, t2, u3, t3, u4, t4}.

References

• Schaefer S. and Goldman R., Non-uniform Subdivision for B-splines of Arbitrary
Degree, Computer Aided Geometric Design, Vol. 26, No. 1 (2009), pages 75-81.

4.4 Degree Raising B-splines

1. Earlier saw how to degree raise Bézier curves. In general, we can show that given
degree n polynonial F n with blossom fn, the blossom of the degree n + 1 polynomial
F n+1 with blossom fn+1 where F n+1 = F n is

fn+1(u1, . . . , un+1) =
1

n+ 1

n+1∑
i=1

fn(u1, . . . , ûi, . . . , un+1), (4.1)

where the notation ûi means ui is not an argument of the blossom.

We can see that this is the appropriate blossom since (i) it is multiaffine; (2) it is
symmetric; and (3) it agrees with F n+1 on the diagonal.

2. We can now apply this directly to B-splines. Given a B-spline F n with knot vector
{t0, . . . , tM} with all knots occurring with multiplicity 1. We wish to find the degree
n+ 1 B-spline F n+1 where F n+1 = F n.

First realize that F n is Cn−1 and so F n+1 is Cn−1. This means that its knot vector
should have all knots occurring with multiplicity 2. So the knot vector is {t0, t0, . . . , tM , tM}.
However, we will only have n − 1 end knots (this requires an even/odd degree speci-
fication of the knot vector, since for n odd, all knots in the degree raised knot vector
will have multiplicity 2, while for n even, the first and last knot will have multiplicity
1).

We can now compute the B-spline control points of F n+1 by using Equation 4.1 and
using consecutive knots from the degree raised knot vector as arguments.

3. Example: suppose we have a cubic B-spline with knot vector {0, 1, 2, 3, 4, 5}. The
degree raised knot vector is {1, 1, 2, 2, 3, 3, 4, 4}. The control points are

• fn+1(1, 1, 2, 2) = (f(1, 1, 2) + f(1, 2, 2))/2

• fn+1(1, 2, 2, 3) = (f(2, 2, 3) + 2f(1, 2, 3) + f(1, 2, 2))/4

• fn+1(2, 2, 3, 3) = (f(2, 2, 3) + f(2, 3, 3))/2
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• fn+1(2, 3, 3, 4) = (f(3, 3, 4) + 2f(2, 3, 4) + f(2, 3, 3))/4

• fn+1(3, 3, 4, 4) = (f(3, 3, 4) + f(3, 4, 4))/2

4. The main issue with degree raising B-splines is how to efficiently compute the control
points of the degree raised B-spline. O(nm) algorithms have been developed, where n
is the degree and m is the number of control points.

4.4.1 Exercises

1. Prove that the above formulas give a generalization for the degree raising formulas for
Bézier curves.

4.4.2 References

• W. Liu, “A simple, efficient degree raising algorithm for B-spline curves”, Computer
Aided Geometric Design 14 (1997) 693–698.

4.5 Degree Reduction

1. We have seen how to increase the degree of a Bézier curve (and of a B-spline curve). We
can also ask: how can we reduce the degree of a Bézier curve? In particular, suppose
we have a Bézier curve P (t) =

∑n
i=0 PiB

n
i (t) and we want to find the control points Qi

of a Bézier curve Q(t) =
∑m
i=0QiB

m
i (t) where m < n.

It may turn out that P is a degree raised version of Q, in which case we can compute the
Qi through various methods (e.g., just reverse the steps of degree raising). However,
in general the problem has no solution. For example, think of an arbitrary quadratic
curve: there is no linear curve that matches it exactly.

Instead, when we degree reduce we have to settle on a solution Q that is an approxi-
mation to P . For example, we could require that the solution minimize the L2-norm
between the curves over [0, 1], e.g., find the Qi such that

ε =
∫ 1

0
||BnP −BmQ||2dt

is minimized, where Bk is a row matrix of the degree k Bernstein polynomials, P is a
column matrix of the Pi and Q is a column matrix of one unknown Qi. Differentiating
with respect to the unknown Qi gives us

∂ε

∂Qi

=
∫ 1

0
2Bm

i (BnP −BmQ).

Differentiating with respect to all of the Qi gives us the following linear system,

Gm,nP −Gm,mQ,
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where the elements of Gm,n are

gi,j =
∫ 1

0
Bm
i (t)Bn

j (t)dt =

(
m
i

)(
n
j

)
(m+ n+ 1)

(
m+n
i+i

) .
Setting this equal to 0 gives us

Gm,nP −Gm,mQ = 0,

and we can now solve for the unknown Q:

Q = G−1
m,mGm,nP.

Gm,m is real, symmetric, and positive definite, so it is always invertible.

2. In general, while we want an approximation to P , we usually want this approximation
to agree with P at the end points. I.e., we will additionally require P (i)(0) = Q(i)(0) and
P (i)(1) = Q(i)(1) for at least i = 0 and possibly for i = 1 and higher. These end condi-
tions fix the end control points ofQ (essentially via the degree raising conditions). Sepa-
rating Q’s control points into the corner control points (Qc = [Q0, ..., Qi, Qm−i, ..., Qm]t)
and “free” control points (Qf = [Qi+1, ..., Qm−i−1]t), and likewise decomposing Bm into
Bc
m and Bf

m, the error term becomes

ε =
∫ 1

0
||BnP −Bc

mQ
c −Bf

mQ
f ||2dt.

Differentiating with respect to the Qf and equating to zero gives

Gp
m,nP −Gc

m,mQ
c −Gf

m,mQ
f = 0,

where

Gp
m,n := Gm,n(i+ 1, . . . ,m− i− 1; 0, 1, . . . , n),

Gc
m,m := Gm,m(i+ 1, . . . ,m− i− 1; 0, 1, ..., i,m− i, ...m− 1,m),

Gf
m,m := Gm,m(i+ 1, . . . ,m− i− 1; i+ 1, . . . ,m− 3− 1),

and Gm,n(. . . ; . . .) is the sub-matrix of Gm,n formed by the indicated rows and columns.

Again, we can solve for the unknown control points as

Qf = (Gf
m,m)−1(Gp

m,nP −Gc
m,mQ

c). (4.2)

Below are some examples of degree reducing a degree 10 curve:
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degree 4 C0, degree 4 C1, degree 4

3. This solution is essentially a “parametric continuity” solution. We could also ask for a
geometric continuity solution; i.e., a solution where the position and tangents must be
equal, but without requiring that the end first (or higher order) derivatives are equal.
This gives us extra parameters to use to improve the approximation as seen in this
example

where the black curve is the original curve, the red one (long dashes) meets the black
curve with C2 continuity at the end points, and the green curve (short dashes) meets
the black curve with G2 continuity at the end points.

However, using geometric continuity unfortunately can lead to a non-linear solution,
although there are various ways to avoid the non-linearity.

4. Although the matrix Gm,m is invertible, potentially the inversion can become numer-
ically unstable. In practice, this occurs around m = 24 when using simple inversion
techniques. However, using Gaussian elimination with pivoting results in stable solu-
tions for values of m of at least 50.

4.5.1 Exercises

• Implement degree reduction with C0 and C1 continuity at the end points (equation 4.2),
and test it on a few examples.
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4.5.2 References

• Y. Ahn, B.G. Lee, Y. Park, and J. Yoo (2004). Constrained polynomial degree re-
duction in the L2-norm equals best weighted Euclidean approximation of Bézier coef-
ficients. Computer Aided Geometric Design 21: 181-191.

• L. Lu and G. Wang (2006). Optimal multi-degree reduction of Bézier curves with
G2-continuity. Computer Aided Geometric Design 23: 673-683.

• Abedallah Rababah and Stephen Mann (2011). G2−Multi Degree Reduction of Bézier
Curves. To appear in Journal of Applied Mathematics and Computation. http://dx.doi.org/10.1016/j.amc.2011.03.016

4.6 Interpolatory Curves

1. Suppose we want a curve to interpolate the control points. First, we’ve already seen
basis functions for such a curve, at least as a single polynomial segment: The Lagrange
basis functions. However, a second way to view the question is “is there an algorithm
similar to the repeated linear combination algorithms for interpolatory curves?” The
answer is “yes”.

2. Suppose we have two points, P0 and P1 that we wish to interpolate at domain values
t0 and t1. It’s clear that

C(t) =
t1 − t
t1 − t0

P0 +
t− t0
t1 − t0

P1

will do the trick.

3. Suppose now that we have three points, P0, P1, and P2, that we wish to interpolate
at t0, t1, and t2. We could form two linear curves to interpolate consecutive pairs of
these points:

C01(t) =
t1 − t
t1 − t0

P0 +
t− t0
t1 − t0

P1

C12(t) =
t2 − t
t2 − t1

P1 +
t− t1
t2 − t1

P2

Now consider what happens if we linearly blend these two curves over [t0, t2]:

C012(t) =
t2 − t
t2 − t0

C01 +
t− t0
t2 − t0

C12.

Evaluating, we find C012(t) has the properties we want, i.e., that C012(ti) = Pi. And
we can draw a pyramid diagram for this:
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P0
P2P1

C012

C01 C12

t−t1
t2−t1

t−t0
t2−t0

t2−t
t2−t1

t−t0
t1−t0

t1−t
t1−t0

t2−t
t2−t0

This is Neville’s algorithm.

4. Note that we have done two things different than with de Casteljau’s algorithm: we
have evaluated over different intervals for each linear combination, and we have ex-
trapolated. While the de Boor algorithm uses different linear combinations at different
locations, it doesn’t extrapolate.

5. We can extend this algorithm to interpolate n points. For example, to interpolate four
points, we obtain the following data flow diagram:

P0
P2P1

C012

C01 C12

t2−t
t2−t1

t−t0
t1−t0

t1−t
t1−t0

C0123

C123

C223

P3

t−t1
t2−t1

t−t1
t3−t1

t2−t
t2−t0

t−t0
t3−t0

t−t2
t3−t2

t3−t
t3−t2

t3−t
t3−t0

t3−t
t3−t1

t−t0
t2−t0

6. We note the following about these curves:

• As already mentioned, the basis functions are the Lagrange basis functions. If we
trace the data flow diagram backwards, they look different from (but similar to)
the Lagrange basis functions. In fact, you can prove that they are the same.

Further, this gives us that the degree n Lagrange basis polynomials sum to 1.

• We can’t assign blossom labels that make sense of the evaluation diagram (well,
I can’t — if you can, please show me!), nor is it easy to draw a de Casteljau type
evaluation diagram.
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• At high degrees, interpolatory polynomial curves exhibit poor behaviour, and
are generally not used. Piecewise polynomial interpolatory curves (such as cubic
Hermite splines) get used instead.

All of the above curves have knots at 0,1,2,...

4.7 Conic Sections

1. We can model a large variety of curves with polynomial Bézier curves and B-spline
curves. However, we are restricted to parametric polynomial curves. In particular,
if we consider degree two parametric polynomials, we only have one type of curve: a
parabola.

Traditionally, however, designers have used conic sections for curve design. While a
parabola is one type of conic section, there are two other type: ellipses (including
circles) and hyperbolas.

While we can’t represent conics as parametric polynomial functions, we can represent
them as parametric rational polynomial functions (a rational polynomial is the ratio
of two polynomials).

I will only give a brief overview of rational curves. For more information, see Farin’s
book. There is also a multiprojective blossom of rational polynomials that I will not
be discussing. See Ramshaw’s Tech Report for more details.

2. A degree n rational Bézier curve is defined as

B(u) =

∑n
i wiPiB

n
i (u)∑n

i wiB
n
i (u)

.

Here the wis are real numbers while the Pis are points. The Bn
i s are the Bernstein

polynomials. Note that this is an affine combination. Normally we think of evaluating
this curve over the interval [0, 1].

One way of thinking of rational Bézier curves is as a polynomial curve in a higher
dimensional space that we evaluate and then project down into a two dimensional
space:

B̄(u) =
( n∑

i

wiPiB
n
i (u),

n∑
i

wiB
n
i (u)

)
.



38 Mann CS 779 Winter 2020

This is also the easiest way to evaluate a rational Bézier curve, although it is not the
most numerically stable way. See Farin for a de Casteljau type of evaluation that is
more stable.

Note that if some of the wis are less than zero that we may get a divide by zero. Also,
if all the wi are 1, then our curve is a polynomial curve.

3. Let’s consider the case when n = 2. These curves are the conic sections: parabolas,
ellipses, and hyperbolas. In fact, if all the wi are 1, then the curve is a parametric
polynomial curve, which is a parabola.

Further, it turns out that we can express our degree two rationals in a standard form
where w0 = w2 = 1. We can now consider what happens as we vary w1. For now, we’ll
assume that w1 > 0. You can prove that if w1 < 1 then the curve is a ellipse. If w1 = 1
then the curve is a parabola. And if w1 > 1 then the curve is a hyperbola.

w1<1

w1=1

w1>1

4. There are two things to note in the above figure: first, we have only traced part of
the conic. And second, we have traced the portion corresponding to the domain [0, 1].
If we trace over the domain [−∞,∞], then we will trace the entire conic. But again,
there are two things to note: first, our parameterization of the portion of the ellipse
outside of [0, 1] will be very poor, since an infinite portion of the domain will map to a
finite portion of the curve. And second, for the parabola and hyperbola, we will have
points at infinity.

5. It turns out there is another way to trace the portion of the conics outside of the
interval [0, 1] (actually, there are at least three other ways). Each rational quadratic
with weights w0 = 1, w1 6= 0, w2 = 1 has a complement with weights w′0 = 1, w′1 =
−w1, w

′
2 = 1. If we trace the complement over the domain [0, 1] then we get the

remaining portion of the conic. Thus, if we trace both (each over [0, 1]) we get the
entire conic section.

6. A third way to get the entire conic section (at least for ellipses) is to make it a piecewise
rational curve, representing it as multiple rational curves. For the ellipse, we will need
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at least three pieces (assuming we don’t allow points at infinity). For the other two
types of conics, we would need an infinite number of pieces (again, unless we allow
points at infinity).

7. A fourth way to get the entire conic is to use the real projective one space as our
domain. See the paper by DeRose in NURBS for Curve and Surface Design, Hans
Hagen editor, SIAM, 1991.

8. Just as we made a rational form of Bézier curves, we can do the same for B-splines. If
we allow a non-uniform knot vector, then we have a NURBs (Non-Uniform Rational
B-spline) curve:

B(t) =

∑n
i=0wiPiN

n
i (t)∑n

i=0wiN
n
i (t)

.

4.7.1 Circles

1. For circles, note that we can construct a rational quadratic segment to represent a
segment of the circle where the first and last control points are points on the circle. It
turns out that the first and last segment of a rational Bézier are tangent to the curve
at the start and end point of the curve (just as they are for polynomial Bézier curves),
and because of symmetry of the circle, the three control points will form an isosceles
triangle.

2. Setting the initial and final weights of the control points to 1, we still need to determine
the weight for the interior control point. Farin and others have shown that this weight
should be cos(α), where α is the angle of the triangle of control points rooted at either
the first and last control point.

4.7.2 Exercises

1. Suppose we set one of the weights in a rational Bézier curve F (t) to zero. If we set one
of the interior weights to zero, then the corresponding control point has no contribution
in the curve. But if we set either the first or last weight to zero, we get a zero divide
by zero singularity when t = 0 or t = 1 (assuming F is parametrized over the interval
[0, 1]).

We can remove this singularity by taking the limit as t→ 0. Derive the exact location
of F (0) when w0 = 0 by removing this singularity via L’Hôpital’s rule (you should
submit your derivation). Verify your result by adding this special case to your rational
Bézier code and testing it on the example in

http://www.student.math.uwaterloo.ca/∼cs779/Data/Rational/test4
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4.7.3 Implementations

1. Implement an evaluator for rational Bézier curves. Your program should write PostScript
output, and plot both the control polygon and the curve (you don’t have to show the
weights). Run your program on the test data {test0,test1,test2,test3} found in the
course web page

http://www.student.math.uwaterloo.ca/∼cs779/Data/Rational/
The format of each file is

d = degree
x0 y0 w0
...
xd yd wd

Note that there can be more than one rational Bézier curve specified per file. All the
curves within one file should be drawn on a single page/diagram.

Assume all curves are parametrized over [0, 1]. Note that to plot test2 your program
will have to be a little bit smarter: technically, there are two divide by zeros that
cause the curve to exit at infinity in one direction and return from infinity in another
direction.



Chapter 5

Geometric Continuity

5.1 Geometric Continuity

1. Let’s return to curves momentarily. Suppose we have two curves F and G parameter-
ized over [0, 1] and [1, 2] respectively, and further suppose that F and G meet C1 at
1.

Let H(u) = G((u−1)/2+1). Then F and H meet C0 at 1 (as H(1) = G((1−1)/2+1) =
G(1) = F (1), but fail to meet C1 at 1:

H ′(u) =
dG((u− 1)/2 + 1)

du

=
1

2
G′((u− 1)/2 + 1),

and thus H ′(1) = G′(1)/2 6= F ′(1).

But geometrically our curves haven’t changed (assuming we adjust Hs domain to be
[1, 3]). If we don’t care about the parametrization of the curves, and only care about
the geometry, then we would like to say these curves meet smoothly. This motivates
the definition of geometric continuity.

2. Definition (informal): Two curves F and G meet with Gk continuity at t0 if there exists
a non-decreasing function l such that F (i)(t0) = G(i)(l(t0)) for all i from 0 to k.

Technically we need more conditions on our functions, such as requirements that the
derivatives of F and G don’t vanish. Further, we should probably make a statement
about the domains of both functions, and insist that l(t0) = t0.

It should be clear that all curves meeting G0 also meet C0. It is reasonably easy to
see that two curves meet with G1 continuity if they have the same tangent line at the
point of contact.

To find a geometric meaning for G2 continuity, we need to know about curvature. If we
look in a local neighborhood of a point on a curve, we can find the best approximating
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circle to the curve. The reciprocal of the radius of this best approximating circle is
known as the curvature of the curve at the point on the curve. If we give a sign to the
curvature (based one whether the best approximating circle is on the “right” side or
“left” side of the curve), then we have what’s known as signed curvature.

If two curves meet with G2 continuity at a point, then they have the same tangent
lines and signed curvatures at that point.

3. For surfaces, there is a formal definition of geometric continuity (which we may give
later). However, as we will restrict ourselves to surfaces meeting G1, we won’t give a
formal definition now.

Informally, two surface patches are said to meet G1 along a common boundary if they
meet C0 along that boundary and if they have the same tangent planes at each point
along this boundary.

Note that there are two benefits to using G1 continuity rather than C1 continuity.
The first benefit is the one that motivated the definition: the notion of continuity is
invariant under “nice” transformations of the domain.

The second benefit is an increase in the kinds of surfaces we can construct. In partic-
ular, with C1 continuous surfaces, we are restricted to constructing surfaces that have
planar topological type. In particular, we can not construct a piecewise C1 surface
that is topologically a sphere without introducing singularities. In particular, we can
not construct a consistent first derivative vector field (“you can’t comb the hair on a
billiard ball”). Note that we can do a little better than just surfaces of planar topolog-
ical type: we can also construct cylinders and tori. The cylinder has an infinite strip as
its domain while the torus has a square domain. Both domains can be used to tile the
plane, and thus, we can identify domain edges and construct consistent first derivative
fields across the boundary.

With tangent plane continuity, we can consider an arbitrary polyhedron as our domain.
We no longer need neighboring domain faces to be coplanar as we no longer need to
construct a domain vector in both domains simultaneously.

4. However, we do pay a price for tangent plane continuity. Consider our condition:
that the tangent planes of both patches agree along the boundary. Equivalently, both
patches have the same surface normals along the boundary. The two normals will be
equal if the cross product of the normal to one patch is perpendicular to a crossbound-
ary tangent to the other patch. I.e., if H(t) is the common boundary curve, NF (t)
is the normal to F along the boundary, and G~v is the crossboundary derivative G in
direction ~v, then for all t we need

NF (t) ·G~v(t) = 0.

For both triangular and tensor product patches, this becomes a polynomial equation
as NF can be written as the crossproduct of H and a crossboundary tangent of F ; we
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can ignore the normalizing factor since this equation must equal zero:

(F~w(t)×H ′(t)) ·G~v(t) = 0.

For triangular patches, this equation can be written as 3(n− 1) polynomial equations
in the control points of F and G.

If all of our control points are unknown, this yields a set of cubic equations to solve.
More commonly, we will know the boundary control points, leaving a set of equations
that are quadratic in the unknowns.

Geometric interpretations are even more difficult except at the ends of the bound-
ary curves, where the condition on the end panels is that they are coplanar. With
some work, geometric conditions can be determined for quadratic triangular patches,
although even this construction is fairly complicated. No further geometric conditions
are known.

5. However, Farin has shown that if we have two degree n patches meeting along a degree
n − 1 boundary then the conditions simplify and become a linear set of equations.
In particular, in the drawing below let H be the control points for the degree n − 1
boundary, and let F and G be the control points for the degree n Bézier patches.

...
G

F

H H
H

G

H

F

0
H1

2 n−3

n−2

n−1H0
0

n−1

n−1

Write G0 and Gn−1 as affine combinations of the other points in the coplanar panels:

G0 = α1H0 + α2H1 + αF0,

Gn−1 = α3Hn−2 + α4Hn−1 + αFn−1,

where α1 + α2 + α = 1 = α3 + α4 + α. Then the two patches meet G1 if the following
hold for i = 0, . . . , n− 1:

Gi =
n− 1− i
n− 1

(α1Hi + α2Hi+1 + αFi) +
i

n− 1
(α3Hi−1 + α4Hi + αFi).

The point here is that we have moved from a non-linear situation to a linear situation.
Further, similar conditions exist for rectangular patches.

Note that there is a geometric interpretation of the locations of G0 and Gn−1: we need
the following triangle ratios to hold:

Area(G0H0H1)

Area(F0H0H1)
=

Area(Gn−1Hn−2Hn−1)

Area(Fn−1Hn−2Hn−1)
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6. The above can be used to construct two patches that meet with G1 continuity. Sup-
pose now that we want to fill a triangular curve network with triangular patches.
Alternatively, suppose we are given a polyhedron with triangular faces and we wish to
construct a G1 polynomials surface that interpolates the vertices of the polyhedron.
One way to proceed is to first build a curve network along the edges of the faces and
then fill in the interiors.

We immediately run into the vertex consistency problem. Consider a vertex of the
polyhedron and the ring of curves and faces surrounding this vertex. Suppose we try
to construct neighboring patches to meet G1.

V

V
m

Consider the ring of faces around the vertex V in the figure above. If we first construct
the boundaries to meet G1 at V and then try to construct three patches to meet G1,
then we might construct two positions for the vertex Vm. This, however, is not allowed
for polynomials patches.

What the above implies is that we need to construct all boundaries surrounding V
simultaneously. However, the same argument can be applied at the other end of each
of the boundary curves. Thus, to solve both the vertex consistency problem and the
G1 problem, we would have to solve them for all vertices in our mesh simultaneously.
This is known as a global solution. Some of the problems with global solutions include

• They’re slow

• If we move a single vertex, the entire surface changes.

The above two problems would be bad enough. However, it can be shown that if the
number of faces surrounding the vertex is even and more than four, then in general
there will not be a solution. Thus, in general the above problem can not be solved.

7. A work around exists for this problem. What we’ll do is rather than fit one patch
per face, we’ll fit three. These methods are known as split domain schemes. The
construction is illustrated in the following diagram:
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We begin with a triangle of data. As a first step, we’ll construct boundary curves
between the data points. Then, we’ll construct a G1 along each patch independently.
Finally, we’ll fill the interior with three patches, once adjacent to each of the bound-
ary curves we have created. Note that we don’t have the inconsistent mixed partial
derivative problem at the corners of the triangle. We will have to ensure consistent
mixed partial derivatives when we construct the remainder of the interior, but that’s
a solvable problem.

8. The first step in the problem is to construct boundary curves. However, we’ll look a
head a little bit to see what kinds of boundaries we can construct. In particular, we
need to know what is the lowest degree patch we can use to get a G1 join across the
external boundaries.

The above picture is a little bit deceiving: before we construct the G1 joins along
the triangle boundaries, we will be constructing the first derivatives along the interior
boundaries at the corner vertices.

In this new situation, it can be shown that cubic patches work in most but not all
situations. In particular, if there are certain symmetries in our data, then a cubic
construction fails. Thus, to handle all settings with one patch type, we have to use
quartic patches.

We’ll now look at one particular crossboundary derivative construction.

9. The conditions given above can be used to a) test if two patches meet G1, or b) given F
we can construct G to meet G1 along one boundary. But suppose we want to construct
two patches to meet G1. In a common situation we already have the boundary control
points for both patches and we merely want to fill in the interiors to meet G1. We
could build one patch arbitrarily and then build the second using the above conditions.
However, our construction will not be symmetrical.

Chiyokura and Kimura describe a constructive approach to creating a G1 join. Their
scheme was intended for rectilinear patches, but also works for triangular patches. In
fact, you can use their scheme to connect triangular patches to rectilinear patches.
Similar schemes were created by Herron and Jensen.
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Suppose we have control points for two patch F and G with common boundary H as
shown below:

G1 G2

G3

H0 H3

F0

F1 F2
F3

G0

Here we can either think of all the control points as belonging to bicubic tensor product
patches, or we can think of them as belonging to quartic triangular patches with cubic
boundaries. We will assume the boundaries have already been constructed and thus,
we are merely looking for G1, G2, F1, and F2.

The approach taken is to first construct a crossboundary vector field, and then build
both F and G to agree with crossboundary vector field along some parametric direction.
Thus, F and G will have the same boundary normals and therefore will meet G1.

The cross-boundary tangent vector field is defined by linearly blending two vectors, Ĉ0

and Ĉ1, one in each of the tangent planes at the endpoints. Chiyokura and Kimura
choose these vectors to be unit vectors perpendicular to the tangents at the boundary
curve’s endpoints, i.e., < Ĉ0, H1 − H0 > = < Ĉ1, H3 − H2 > = 0. For patch F, the
cross-boundary field is given by

~C(t) = (1− t)Ĉ0 + tĈ1.

The two perpendiculars Ĉ0 and Ĉ1 are unique, up to sign. The signs are chosen so
that k0 and k1 below are positive. ~C(t) together with H ′(t) completely specifies the
tangent plane field along the boundary.

For F to agree with the tangent plane field given by H ′(t) and ~C(t), there must exist
functions k(t) and h(t) such that

D~r(t)F (0, t, 1− t) = k(t) · ~C(t) + h(t) ·H ′(t), (5.1)

where ~r(t) is the radial direction in the domain of F (i.e., if the domain of F is 4pqs
where F (q) = H0 and F (s) = H3, then ~r(t) = ((1− t)q + ts)− p).
Let ~Fi = Fi −Hi and ~Hi = Hi+1 −Hi. The values of k(t) and h(t) are determined at
the endpoints by evaluating Equation 5.1 at t = 0 and t = 1 :

~F0 = k0 · Ĉ0 + h0 · ~H0, (5.2)

~F3 = k1 · Ĉ1 + h1 · ~H2, (5.3)
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where k0 = k(0), k1 = k(1), h0 = h(0), and h1 = h(1). For h and k to interpolate these
endpoint conditions, they both must be at least linear functions. If we restrict them
to be no more than linear, then each is uniquely determined:

k(t) = k0 · (1− t) + k1 · t,
h(t) = h0 · (1− t) + h1 · t.

Rewriting Equation 5.1 in the cubic Bernstein basis, the coefficients of B3
1(t) and B3

2(t)
determine the desired interior control points:

F1 =
1

3
{(k0 + k1)Ĉ0 + k0Ĉ1 + 2h0

~H1 + h1
~H0}+H1, (5.4)

F2 =
1

3
{k1Ĉ0 + (k0 + k1)Ĉ1 + h0

~H2 + 2h1
~H1}+H2. (5.5)

There is still some freedom left in Equation 5.1. If h(t) is a linear function, then the

product k(t) · ~C(t) must be a polynomial of no higher than third degree. In the above

formulation, this product is only a quadratic polynomial. Either k(t) or ~C(t) can be
increased from a linear function to a quadratic function. Increasing k(t) to a quadratic

function gives a scalar degree of freedom, while increasing the degree of ~C(t) yields a
vector degree of freedom. Jensen used the former generalization. He used the same
linear blend of unit vectors for ~C(t), but used the following quadratic scale function:

k∗(t) = k0 · u0(t) + C · (k0 + k1)

2
u1(t) + k1 · u2(t),

where
u0(t) = 2t2 − 3t+ 1, u1(t) = 4t− 4t2, u2(t) = 2t2 − t,

and C is a scalar shape parameter. For C = 1, k∗(t) = k(t).

A second degree of freedom in Equation 5.1 is in the choice of Ĉ0 and Ĉ1. These two
vectors may be chosen in any fashion that uses information available to both patches,
where the construction from both sides gives the same vectors with opposite sign. For
example, in a later paper, Chiyokura defines Ĉ0 and Ĉ1 as

Ĉ0 =
G0 − F0

|G0 − F0|
,

Ĉ1 =
G3 − F3

|G3 − F3|
.

Note that this definition of Ĉ0 and Ĉ1 is affine invariant and requires knowledge about
both patches neighboring the boundary, whereas the earlier definition is not affine
invariant but uses only information about the boundary curve.
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Chapter 6

Bivariate Data Fitting and Modeling

6.1 Interpolatory Surfaces

We will briefly look at polynomial surfaces that interpolate grids (triangular or rectilinear) of
data points. Such schemes are unsuitable for most purposes as (a) they require high degree
surfaces; (b) they have the same shape problems that interpolatory polynomial curves have.

6.1.1 Triangular Lagrange Patches

1. Suppose we are given a triangular grid of 2D domain points Dijk and a triangular grid
of points Pijk, where

Dijk =
i

n
Dn00 +

j

n
D0n0 +

k

n
D00n,

with i+ j + k = n. Our goal is to construct a surface S such that S(Dijk) = Pijk.

2. If n = 1 then the question is easily solved: Let (u0, u1, u2) be the barycentric relative
to 4D100D010D001. Then

S(u) = u0P100 + u1P010 + u2P001

has the desired interpolatory properties.

3. Suppose now that n = 2. We can easily build three surfaces S100, S010, and S001 that
each interpolate three of the data points, where in particular each S will interpolate
the points Pi+1 jk, Pij+1 k, and Pijk+1 at the corresponding domain point. Eg,

S100(u) = u0P200 + u1P110 + u2P101,

where (u0, u1, u2) are the barycentric coordinates of u relative to 4D200D110D101

4. Consider the following surface:

S(u) = u0S100(u) + u1S010(u) + u2S001(u),
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where (u0, u1, u2) are the barycentric coordinates of u relative to4D200D020D002. Note
that the subsurfaces S100, S010, S001 blend three points using barycentric coordinates
relative to different domain triangles.

If we evaluate S at one of the corners of4D200D020D002 then we obtain the correspond-
ing P value, since (for example) D200 has barycentric coordinates (1, 0, 0) relative to
4D200D020D002, and thus S(D200) = S100(D200) = P200.

If we evaluate S at one of the other three domain vertices (for example, D110), we get

S(D110) =
1

2
S100(D110) +

1

2
S010(D110) + 0S001(D110)

= P110.

5. This brings us to the idea for the arbitrary degree triangular Lagrange surface: Assume
we have three lower degree Lagrange surfaces defined over overlapping domains. When
we blend these surfaces, if we evaluate at a corner of the enlarged domain such as Dn00,
then only one barycentric coordinate is non-zero, and we obtain the corresponding
range point, while if we evaluate at a common domain point (such as Dijk, where
i, j, k ≥ 0), then all three subsurfaces have same value Pijk.

More formally, assume we have three degree n triangular Lagrange surfaces, Sn00, S0n0, S00n

where

Sn00(Dijk) = Pijk i 6= 0

S0n0(Dijk) = Pijk j 6= 0

S00n(Dijk) = Pijk k 6= 0.

Build the surface S as

S(u) = u0Sn00(u) + u1S0n0(u) + u2S00n(u),

where (u0, u1, u2) are the barycentric coordinates of u relative to 4Dn00D0n0D00n.

Then S(Dijk) = Pijk.

6. Note that there is a pyramidal evaluation algorithm for these surfaces.

6.1.2 Rectilinear Lagrange Patches

1. We can construct an interpolatory rectilinear patch by using univariate methods. In
particular, suppose we have two knot vectors, s0 < s1 < . . . < sm and t0 < t1 < . . . <
tn, and a set of points Pi,j for 0 ≤ i ≤ m and 0 ≤ j ≤ n, and we want a surface S(s, t)
such that

S(si, tj) = Pi,j.
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Then the following surface clearly has these properties:

S(s, t) =
∑
i

∑
j

Lmi (s)Lnj (t)Pi,j,

where Lmi (s) are the Lagrange basis functions formed from the s-knots, and Lnj (t) are
the Lagrange basis functions formed from the t-knots. This is also known as a tensor
product Lagrange surface.

2. Like tensor product Bézier patches, we can regroup the above expression and evaluate
the tensor product Lagrange patch via repeated linear interpolation:

S(s, t) =
∑
i

Lmi (s)
(
Lnj (t)Pi,j

)
.

3. Note that there is a pyramidal evaluation algorithm for these surfaces, similar to re-
peated bilinear interpolation for tensor product Bézier surfaces.

6.2 Functional Triangular Interpolation Schemes

In this section, we will begin to look at methods for fitting surfaces to a set of triangulated
points. Our main interest is on parametric data, but we will start here by looking at two
functional schemes as they are the basis for some of the parametric schemes.

Recall that in the functional case, for C1 continuity you merely need adjacent panels of
adjacent patches to be co-planar. The two schemes in this section rely heavily on this fact.

6.2.1 Clough-Tocher

1. The functional variation of our problem is given a set of z values over the plane whose
corresponding (x, y) values have been triangulated, find a piecewise polynomial, C1

surface that interpolates this data. Usually, we also assume that we have normals at
the data points and that we’re trying to interpolate both position and normal.

2. While it is easy to achieve C1 continuity between two functional Bézier patches, it is
more difficult to achieve the desired continuity in a patch network. This difficulty is a
result of the continuity conditions across the boundaries imposing a cycle of constraints
around each vertex.

3. Clough-Tocher bypassed this problem by splitting each triangle of the domain into
three triangles. This effectively splits the cycle of contraints.

Clough-Tocher then fit a cubic Bézier patch to each of these subtriangles:
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Their construction works as follows (remember, we only need to find the z value for
each point):

(a) The large black points are the data points.

(b) The small black points are determined by the normals at the data points; these
points much lie in the tangent plane at the nearest corner vertex (data point),
and since we only need the z value, we can find their location by intersecting a
line with a plane.

(c) The white points are set to achieve a C1 join with the patch in the neighboring
macro-triangle; there is a linear degree of freedom in this construction.

(d) The grey points are set so as to achieve C1 continuity across the interior bound-
aries.

4. The only freedom in this construction is in the setting of the white points. Clough-
Tocher used a setting that achieves quadratic precision. Later, Farin used a setting to
minimize the C2 discontinuity, which gives the resulting patch cubic precision. Later
still, Foley and Opitz gave a cross boundary construction similar to Farin’s that also
gives cubic precision.

5. Franke gives a survey of this and other functional interpolation schemes.

6.2.2 Powell-Sabin

1. Another functional data fitting scheme performs a 6:1 split of the domain. The advan-
tage of this scheme is that it fits quadratic patches to the data (position and normals)
and is C1 at the joins.

2. The first step is to subdivide the domain into six triangles. This is done as a two step
process, illustrated on two data triangles by the following diagram:
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In the first step, we perform a 3:1 split on each domain triangle, splitting at some
point on the interior of each triangle. The split point might be the centroid, but isn’t
required to be.

As a second step, we connect the split points of adjacent triangles, and use this to split
each triangle from the previous step into two triangles. Note that this divides the edge
between neighboring data triangles at a point other than the midpoint.

For edges that don’t have neighboring triangles, we split them along at an arbitrary
point, usually the midpoint.

3. Next, we need to set the z-values of the control points. We will use the following
diagram for the six patches constructed for one data triangle:

A C

C

B
C

S

B

B

B

C

B
B

BB

B A

A

0 0 0 00

1 C1 1

The construction of z-values proceeds in the following steps:

(a) Set the A z-values to those of the data points.

(b) Set the B z-values so that the B points lie in the tangent plane at the correspond-
ing data point.

(c) Set the Ci points to lie on the segment between the corresponding pairs of Bis.
Note that this is not at the midpoint of segment. Rather, it is in the ratio that
the Ci domain point (i.e., just the xy values) breaks the domain Bi segment.

(d) Set S to lie in the plane spanned by the Bs and Cs.

4. C0 continuity across all boundaries is clear. C1 continuity across internal boundaries is
also clear: The As and neighboring Bs are coplanar; S and the Bs and Cs are coplanar,
and B0C0B0C1 are coplanar.

5. What is less clear is why there is C1 continuity across the external boundary: nothing
in the construction appears to even address the issue. The trick that gives us C1

continuity comes from the way we joined the split points when going from a 3:1 split
to a 6:1 split. Proof of continuity across the macroboundaries is left as an exercise.
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6.2.3 Exercises

1. Prove that the Powell-Sabin scheme constructs patches that meet with C1 continuity
across the macroboundaries.

2. Suppose we want to construct a function f(x, y) with the following properties:

• f is zero on the boundaries and exterior of a regular n-sided polygon centered at
the origin in the x-y plane.

• f is non-zero everywhere inside the polygon.

• f(0, 0) = 1.

• f is C1 everywhere.

Further suppose we wish to construct such a function using quadratic (degree 2) trian-
gular Bézier patches. As a first step we need to triangulate the domain polygon. We
will then place one Bézier patch over each triangle.

(a) (5 pts) Prove that if we use the obvious triangulation of the domain (connecting
the center to the corners) then we can not construct quadratic Bézier patches
over these triangles that meet C1. Note: you only need to prove this for a partic-
ular polygon (I suggest the square). The generalization to an arbitrary n-gon is
immediate.

(b) (15 pts) Derive a construction for such a function f using quadratic (degree 2)
triangular Bézier patches. You may orient the polygon in the plane in any fashion
that is convenient to you. You may use as many triangular patches as you need
(although the problem can be solved with 3n patches). Note any shape parameters
your construction has.

(c) (5 pts) Use your program from the first problem to plot solutions for n = 3, 4, 5, 6.

Note: This problem uses functional Bézier patches. Once you know the domain of such
a patch, you know the x-y values of all the contorl points. All you need to find is the
z-values of the control points.

6.3 Parameteric Triangular Interpolation Schemes

We will now look at parameteric data interpolation. The C1 conditions for parameteric
patches are more difficult than those for functional patches. But even those are inadequate,
since we need to use G1 continuity between patches in the parametric case. The schemes
in this section rely heavily on the continuity construction of Farin and Chiyokura-Kima
described earlier in these notes.
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6.3.1 Shirman-Séquin

1. The description below is based on Shirman-Séquin’s construction, with notes as to
where degrees of freedom occur.

To each triangle of data, we will fit three quartic patches. These patches will have
cubic boundaries. Along the exterior boundaries, we will use the Chiyokura-Kimura
G1 construction. And along the interior boundaries, we will use Farin’s constraints to
achieve a G1 join.

We will label the control points as illustrated in the following diagram:
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The boundaries of all patches are cubic. Because we will want sometimes to refer to
the cubic control points and at other times the quartic control points, we will super
script them with the degree.

2. The construction proceeds as follows:

(a) Corner points (VQ etc) are required to be the corners of the triangle.

(b) Along each exterior boundary, there are two control points that need to be set,
the E3s. Each control point has two scalar degrees of freedom. Empirical tests
indicate that it is advantageous to restrict each boundary to a plane, reducing the
number of degrees of freedom to one per control point (plus one for the plane).

Note that we must construct the same boundary curve for both the patch and its
neighbor on the other side of the triangle’s edge.

(c) Next, the I3
∗1 control points are set. While each has two scalar degrees of freedom,

for reasons of symmetry it is best to restrict them to the line through V∗ and the
midpoint of the nearest Es.
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(d) Now we can use the Chiyokura-Kimura construction to build the C control points.
Note that we have five scalar degrees of freedom for each pair of Cs. However,
four of these degrees of freedom must be used in an identical fashion by the
construction for the patch on the other side of the triangle’s edge.

(e) The remaining control points are set to satisfy Farin’s G1 conditions along all the
interior boundaries. First, we set VS to be the centroid of the I3

∗2s. Note that this
is the only symmetric choice for this control point. Also note that this choice of
VS and the above choice of I3

∗1s meets the first requirement of Farin’s conditions
(that of equal ratio panels at the ends).

We now use Farin’s conditions to get six equations with six unknowns. For ijk ∈
{PQR,QRP,RPQ}, the following relationships are imposed:

E4
j3 = αi2I

3
i1 + αi1Vi + αiE

4
k1, (6.1)

where αi1 + αi2 + αi = 1. Similarly, at the other end of the internal boundaries,
the following relationships hold:

I4
k3 = αi3I

3
i2 + αi4VS + αiI

4
j3, (6.2)

where αi3 + αi4 + αi = 1. For reasons of symmetry, we set αi = −1 for all i.

This system of equations involving the interior control points that has the follow-
ing solution:

I3
i2 = − αi3

2αi2
Vi −

(
αi1
αi2

+
αi4
2αi2

)
I3
i1 +

3

2αi2
(Cji + Cki) ,

Ni = −αi3
3
I3
i1 +

αi3
3

(I3
j1 + I3

k1) +
(
αi2
18
− αi1 + 2αi4

6

)
I3
i2 +(

αi2
18

+
αi1 + 2αi4

6

) (
I3
k2 + I3

j2

)
.

Setting VS to be the centroid of the I3
i2s fixes the following αs:

αi3 = −3

4
, αi4 =

11

4
.

αi1 and αi2 are now related by αi1 +αi2 = 2. This leaves a scalar shape parameter
to influence the shape of the patch interiors. Note: Setting I3

i1 sets αi1 and αi2;
alternatively, setting αi1 and αi2 sets I3

i1. The point is, these three things are not
independent.

Note that even after making simplifications (using cubic boundaries, using Chiyokura-
Kimura’s G1 conditions, using Farin’s G1 conditions), we still have a large number
of degrees of freedom remaining. These degrees of freedom have a large impact on
the shape of the surface. In the papers describing this construction, these degrees of
freedom are set arbitrarily, resulting in surfaces with arbitrarily poor shape.

3. There are several similar schemes due to Jensen, Piper, and Peters. Hansford also has
a rational polynomial scheme that operates in a similar manner.
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6.3.2 Nielson

1. We now look at Nielson’s method for filling triangular networks. This method does
not create polynomial patches. In fact, it does not even give an explicit representation
for the surface. Rather, it gives a construction for the patch.

Nielson’s scheme is a side-vertex method. The method proceeds by first constructing
three boundary curves, one corresponding to each edge of the input triangle. Next,
three patches are created, one for each boundary/opposite-vertex pair. The interior of
each patch is constructed by passing curves from points along the boundary (or “side”)
to the opposite vertex. Hence the name “side-vertex”, as shown in the figure below.
The three patches are then blended together to form the final patch.

G  (b  , b  , b  )p p q r

Vr
Vq

Vp

g  [V  , V  , N  , N  ]q r q r (      )
p

br

1 − bv

2. All curves are constructed from two points and associated normals. We assume the
existence of a curve construction operator gv that takes two vertices with normals and
constructs a curve:

gv[V0, V1, N̂0, N̂1](t),

such that gv(0) = V0, gv(1) = V1, < g′v(0), N̂0 > = 0, and < g′v(1), N̂1 > = 0. We
also assume the existence of a normal field constructor gn that constructs a continuous
normal field along the curve gv, where gn is required to interpolate N̂0 and N̂1 at the
endpoints.

3. The construction proceeds by building three patches, Gi, i ∈ {p, q, r} defined as:

Gi(bp, bq, br) = gv

[
Vi, gv[Vj, Vk, N̂j, N̂k]

(
bk

1− bi

)
,

N̂i, gn[Vj, Vk, N̂j, N̂k]

(
bk

1− bi

)]
(1− bi),

where bp, bq, br are the barycentric coordinates of the domain point. Nielson notes the
following two properties of Gi:

(a) Gi interpolates all three of the boundaries.
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(b) Gi interpolates the tangent plane field of the boundary opposite vertex Vi.

4. The final surface is defined to be

G[Vp, Vq, Vr, N̂p, N̂q, N̂r] = βpGp + βqGq + βrGr,

where

βi =
bjbk

bpbq + bqbr + brbp
. (6.3)

Nielson shows that if three surfaces having properties 1 and 2 are blended with these βi,
then the resulting surface will interpolate all the boundary curves and tangent fields.
The theorem is true for a large class of gv and gn. The operator gv that Nielson presents
constructs tangent vectors from the two normals and interpolates the two points and
these vectors with a cubic polynomial curve.

5. The construction of curves is discussed later in the notes. Here we will look at a
normal constructor. If we first construct the curve gv and want a normal field to be
perpendicular to the surface, we need the normal field to be perpendicular to this
curve.

As an initial guess, we can linearly interpolate the normals at the vertices. However,
such a “normal” will not be perpendicular to the boundary curve. So starting with
this initial normal guess, Ng, we compute the cross product of g′v×Ng, giving a vector
perpendicular to both Ng and g′v. We now compute the normal as

(g′v ×Ng)× g′v.

6.3.3 Triangular Gregory Patches

1. Triangular Gregory patches are a variant of Gregory squares. Essentially, we construct
a quartic patch with cubic boundaries, where the twist points of the patch are a blend
of two twist points, one for each boundary:

VR VQ

VP

IRP

IRQ
IPQ IPR

IQR

IQP
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2. The points Iij and Iik are blended to form the point Ii as follows:

Ii =
bk(1− bj)Iij + bj(1− bk)Iik
bk(1− bj) + bj(1− bk)

where (bi, bj, bk) are the barycentric coordinates of the domain point relative to the
domain triangle. Note that if we are on the edge between i and j, then bk is zero, so
Ii = Iik.

We will use Chikura-Kimura to construct our crossboundary points. To evaluate the
patch, we compute Ip, Iq, and Ir and evaluate the patch as a polynomial Bézier patch.

It can be shown that this patch interpolates the crossboundary derivative behavior on
all three boundaries.

3. The patch, however, is a rational polynomial patch. Further, it has a removable sin-
gularity at the corner points, since we get a 0/0 in the computation of one of the
Iis.

6.3.4 Herron

1. Herron introduced a triangular surface fitting scheme in the following form:

F = B + bpbqbrX

where B interpolates the boundaries and X is presented as a function that adjusts
the cross boundary derivatives. Although F is a point-valued function with geometric
meaning, neither B nor X represent affine geometric entities (points, vectors, etc).

2. Alternatively, we can rewrite Herron’s scheme as

F =
∑

i=p,q,r

βiFi,

where the βi are Nielson’s weight functions. Each Fi is a quartic Bézier patch with
cubic boundaries. Two of the interior control points are set using Chiyokura-Kimura’s
method to achieve G1 continuity across one boundary. The third control point is a free
parameter.

3. When we blend the three patches with Nielson’s weights, we know that the resulting
patch will interpolate the derivative behavior along all three boundaries.

6.3.5 Gregory and Charrot

1. Gregory and Charrot devised a “side-side” surface scheme that linearly blends three
patches, each of which interpolates the crossboundary behavior on two of the three
boundaries.

The three patches are then blended using Nielson’s weights.
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6.3.6 Hagen-Pottmann

1. Similar to Nielson’s scheme, except it creates a G2 surface.

2. Blending functions:

βi =
b2
jb

2
k

b2
jb

2
k + b2

kb
2
i + b2

i b
2
j

3. Curve construction operator interpolates position, first, and second derivatives at two
points.

4. Requires creating a “tangent plane field” and “curvature field” along each boundary.

5. Numerical problems.
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Vol 4, No 4, December 1987.
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6.4 Boundary Curves

Missing from the above techniques are methods for constructing boundary curves (which in
Nielson’s case is also needed for the interior of the patch). There is a fair amount of freedom
in the construction of these curves, and the resulting surface shape is very sensitive to these
parameters. In this section, I will discuss some simple methods for constructing boundaries,
and discuss one more sophisticated method.

6.4.1 Simple Curve Construction

• Note that the boundary curves of the various schemes have to satisfy the conditions
required of Nielson’s gv curve constructor:

– gv(0) = V0,

– gv(1) = V1,

– < g′v(0), N̂0 > = 0,

– < g′v(1) N̂1 > = 0,

where V0 and V1 are the vertices we want to interpolate and where N̂0 and N̂1 are the
normals we want to interpolate. This data can easily be interpolated by a cubic Bézier
curve with control points b0, b1, b2, b3:

– b0 = V0

– < b1 − b0, N̂0 > = 0,

– < b3 − b2, N̂0 > = 0,

– b3 = V1.

The only difficulty is that b1 and b2 have two degrees of freedom each.

• Shirman and Séquin used the following method (which they do not recommend) for
setting b1 and b2. Project V1 into the tangent plane (V0, N̂0) giving point pv1. Set b1

on the line containing V0 and pv1 such that 3|b1 − b0| = |V1 − V0|. Do the symmetric
construction to set b2.

Alternatively, we could do the following:

1. Set ~v = N̂0 × (V1 − V0)

2. Set ~w = N̂0 × ~v

3. Set b1 = b0 + tŵ where t = |V1 − V0|/3

4. Construct b2 in a symmetric fashion.
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(Note: The above two methods construct the same point.)

You can imagine variations on these techniques. However, they all construct non-
planar boundary curves. The factor of 3 gives us linear precision (for the boundary
curve).

• Empirical evidence indicates that planar boundary curves yield surfaces with better
shape. To construct a planar boundary curve, we first pick a plane in which to place
our boundary curve. We then intersect this plane with the two tangent planes to get
tangent lines. Finally, we position the interior control points along this tangent line.

One approach choice of plane is the following:

– Let N̂ = (N̂0 + N̂1)/|N̂0 + N̂1|.

– Choose the plane containing V0, V1, and N̂ as the plane in which to place the
boundary curve.

• Nielson (together with Farin and Hamann) provided different gv and gn functions. For
gv, they used generalized degree raised conics (rational quadratics). Since a conic can’t
model an inflection point, they generalized the degree raised conics by flipping the data
when it requires an inflection point, and then flipping one of the degree raised control
points to lie in the tangent plane.

TT

T

T

In the figure above, the left shows a conic (without weights) with white control points
and the degree raised control points (in gray). The T s are the given tangent data.
The right shows tangent data that cannot be fit with a conic. So we flip one tangent,
construct the conic, and then flip one of the degree raised control points.

The problem with this scheme is that it is easy to give it data where it will construct
a curve with very high curvature at one end:
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T
T

This will result as what appears to be a crease in the surface.

• Later still, Mann incorporated a cross-boundary scheme of Foley to achieve significant
improvements in shape.

6.4.2 de Boor-Höllig-Sabin

1. If we have two points and two vectors in the plane, we can construct a parametric
cubic curve C that interpolates the points and has first derivatives at the two points
that interpolate the vectors.

If the data has been sampled off some other curve F , then it can be shown that the
error |F − C| is O(h4) where h is the distance between the two points.

2. Suppose now that we have two points, two unit vectors, and two signed curvature
values. Then in general, we can interpolate this data with a parametric cubic curve.
Further, the error in the approximation is O(h6)

3. In particular, let b0, . . . , b3 be our cubic control points. If the data to interpolate
are positions f0, f1, tangents d0, d1, and curvatures κ0, κ1, then we know b0 = f0 and
b1 = f1. We also know

b1 = b0 + δ0d0

b2 = b3 − δ1d1

for some scalars δ0 > 0 and δ1 > 0 to meet our G1 conditions.

Our G2 conditions are

κ0 = 2d0 × (b2 − b1)/(3δ2
0)

κ1 = 2d1 × (b1 − b2)/(3δ2
1)

We can solve these two equations for δ0 and δ1:

(d0 × d1)δ0 = (a× d1)− 3

2
κ1δ

2
1

(d0 × d1)δ1 = (d0 × a)− 3

2
κ0δ

2
0,

where a = f1−f0. Note that δ0 is linear in the first equation, and we can trivially solve
for it in terms of δ1 and substitute into the second equation. This gives us a fourth
degree polynomial in δ1 whose real roots can be substituted into the equation for δ0.
We are interested in solutions where both δs are positive.
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6.4.3 References:

High accuracy geometric Hermite interpolation, Carl de Boor, Klaus Höllig, and Malcom
Sabin, in CAGD, Vol 4, No 4, December 1987.

6.4.4 Crossboundary Schemes

1. In addition to boundary curves, we should also pay attention to the crossboundary
construction.

2. Clough-Tocher: Linear variation, quadratic precision

3. Farin: Minimize C2 discontinuity

4. Foley-Opitz: Cubic precision

5. Davidchuk, Mann: Put Foley-Opitz in parametric setting

6.4.5 References:

A Parametric Triangular Patch Based on Generalized Conics, Bernd Hamann, Gerald Farin,
and Gregory Nielson, in NURBS for Curve and Surface Design, G. Farin (ed), SIAM, 1991.

An Improved Side-Vertex Triangle Mesh Interpolant, Stephen Mann, Graphics Interface
’98, 1998.

6.4.6 Implementations

1. Implement one of the following surface construction schemes:

• Shirman-Séquin

• Nielson

• Triangular Gregory Patches

• Catmull-Rom subdivision

• Loop/Peters subdivision

Note while Shirman-Séquin is probably the hardest to implement, you can use the
tesselator you wrote for the previous problem to render the surface. For the next
two schemes, you’ll need to integrate tesselation code into the scheme itself. For the
subdivision scheme, you will need to make a data structure to access the relevant
adjacency information.

To compute surface normals, you’ll have to write numerical approximation code for
all but Shirman-Séquin’s code. For subdivision schemes, just use the weighted sum
of the faces normals around a vertex (this method is unacceptable for the other three
schemes).
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You should fit your surfaces to the corners of the patches given in Problem 1 of this
assignment. Note that subdivision schemes will give surfaces that do NOT interpolate
the data points.

6.5 B-patches

1. We’d like a B-spline like construction for triangular patches. That is, we’d like to be
able to construct a triangular patch network with automatic Cn−1 continuity.

B-patches are a first step towards this. By themselves, they say nothing about conti-
nuity. However, their knot arrangement is similar to that of B-spline curves. Recall
that a cubic Bézier curve is defined over an interval [c, d] by control points

f(c, c, c), f(c, c, d), f(c, d, d), f(d, d, d),

while the corresponding B-spline reprentation is defined over a knot vector a ≤ b ≤
c < d ≤ e ≤ f (for some values a, b, e, f) by control points

f(a, b, c), f(b, c, d), f(c, d, e), f(d, e, f).

2. For a triangular surface patch, we will start with a domain triangle 4T0T1T2 and
associate a set of knots

{t0,0, . . . , t0,n−1, t1,0, . . . , t1,n−1, t2,0, . . . , t2,n−1},

where T0 = t0,0, T1 = t1,0, T2 = t2,0. For the cubic case, we have something like

2

0,0 1,0

2,0

0,1

0,2

1,1

1,2
t

t

2,1

t

2,2

t

tt

T = t

T = t T = t0 1

We now define our control points P~i (with ~i = (i0, i1, i2) and |~i| = n) as

P~i = f(t0,0, . . . , t0,i0 , t1,0, . . . , t1,i1 , t2,0, . . . , t2,i2).

Schematic drawings of degree 1, 2, and 3 control nets are:
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f(t20)

f(t10)f(t00)
f(t00,t10)

f(t00,t20,t21)
f(t20,t21)

f(t00,t01,t20)

f(t00,t10,t11)f(t00,t01,t10)

f(t20,t21,t22)

f(t10,t20,t21)

f(t10,t11,t20)

f(t10,t11,t12)f(t00,t01,t02)

f(t00,t20) f(t10,t20)

f(t10,t12)g(t00,t01)

with the center control point of the cubic patch having the blossom label f(t0,0, t1,0, t2,0).

To evaluate a B-patch, note that in each of the upward pointing triangles the blossom
labels only differ in one argument. Thus, we express our domain point in barycentric
coordinates with respect to this triangle (of differing arguments) and use those as
weights to the control points.

Thus, if we define λ~i,d(u) to be the barycentric coordinates with respect to4t0,i0t1,i1t2,i2 ,
then we have

f(t00, t01, u) = λ(3,0,0),0(u)f(t00, t01, t02) + λ(3,0,0),1(u)f(t00, t01, t10) +

λ(3,0,0),2(u)f(t00, t01, t20).

3. More generally, we can make a de Casteljau type algorithm:

c0
(i0,i1,i2)(u) = c(i0,i1,i2) = f(t0,0, . . . , t0,i0 , t1,0, . . . , t1,i1 , t2,0, . . . , t2,i2)

c`(i0,i1,i2)(u) = λ(i0,i1,i2),0(u)c`(i0+1,i1,i2)(u) + λ(i0,i1,i2),1(u)c`(i0,i1+1,i2)(u) +

λ(i0,i1,i2),2(u)c`(i0,i1,i2+1)(u)

Further, we can construct basis functions:

B(0,0,0)(u) = 1

B(i1,i1,i2) = 0 if ij < 0

B(i1,i1,i2) = λ(i0−1,i1,i2),0(u)B(i0−1,i1,i2)(u) + λ(i0,i1−1,i2),1(u)B(i0,i1−1,i2)(u) +

λ(i0,i1,i2−1),2(u)B(i0,i1,i2−1)(u)

4. Merging the ideas of B-patches with Simplex splines, one can make a type of triangular
B-splines. These splines are not ideal in that they do not have a single polynomial patch
per face, but they do give a Cn−1 surface for a triangulated domain. See the references
for more details.



Mann CS 779 Winter 2020 67

6.5.1 References

H.-P. Seidel, Symmetric recursive algorithms for surfaces: B-patches and the de Boor algo-
rithm for polynomials over triangles, Constructive Approximation, 7 (1991).

W. Dahmen, C.A. Micchelli, and H.-P. Seidel, “Blossoming Begets B-splines Built Better
by B-Patches,” Mathematics of Computations, Vol 59, No. 199, July 1992.

6.6 Evaluating Surface Quality

6.6.1 Line Drawings

Before graphics became cheap enough, quality of surfaces often shown with line drawings.

• The simplest way is to tessellate the surface and draw the outlines of the triangles.

• Hidden surface removal improved things a bit.

• A related line drawing method was to trace isoparametric lines.

Ie, for parametric surfaces, fix one domain parameter and trace the image of the curve
obtained by varying the other parameter value.

• Drawing triangulations would often achieve a form of isoparametric lines, since nor-
mally we sample in an isoparametric manner.

• Both triangulations and isoparametric lines fail to display severe shape defects. With
some training (by using other techniques), you could learn to spot certain types of de-
fects, mainly be noticing when the isoparametric lines don’t have uniform distribution.

6.6.2 Shaded Images

A big step up from line drawings are shaded images. From one view point, shaded images
are THE way we want to evaluate surfaces used for geometric design: our primary concern
is how the final product looks. But a few problems remain: while we can often say “gee,
that surface looks bad”, it can be hard to decide why it looks bad. Also, we usually have to
rotate the surfaces to try to spot defects, and we’re never quite sure we’ve checked things
enough. Finally, we need material properties for the surfaces (diffuse and specular reflection
coefficients). These material properties have a strong impact on how we perceive the surface
and any shape defects.

6.6.3 Curvature

Curvature plots are a common method for evaluating surface quality. Usually we get a scalar
curvature value that we then map to a colour. Discontinuities in colour or rapid changes in
colour indicate shape defects.
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1. To understand surface curvature, we begin by looking at curve curvature for planar
curves. The curvature of a curve is defined by looking at the best approximating circle
to a point on a curve. If F (t) is our curve, then the curvature of F (x) is

κ(x) =
f ′(x)× f ′′(x)

||f ′(x)||3
.

The curvature κ is the reciprocal of the radius of the best approximating circle to the
curve at x, (1/κ is known as the radius of curvature).

2. We will also care about on which side of the curve the best approximating circle lies,
and we arbitrarily choose one side to have positive sign and the other side to have
negative sign.

3. Note that at an inflection point, the curvature is 0 and the radius of curvature is
infinite.

Surface curvature is harder to define than curvature for a curve. The issue is that at a
point P on the surface S, the surface curves in different amounts in each direction ~v. We
could try a curve C passing through P and asking for the curvature of the C at P . However,
even if we insist that the curve be a planar curve (for our definition of curve curvature is
for planar curves), we still have an infinite number of planes that slice the surface at P and
contain ~v.

The last difficulty is usually addressed by considering Normal Section Curvature, where
we slice the surface with planes that contain the normal n̂ of S at P , and ask for the signed
curvature of these curves at P .

If we consider the normal section curvature in all directions around a point P , we find
that it is a quadratic function of the direction (roughly speaking) with a maximum and
minimum value (although these may sometimes be infinite). The maximum and minimum
signed normal curvatures are known as the principle curvatures κ1 and κ2. The directions in
which we have these maximum and minimum values are known as the principle directions.

The term K = κ1κ2 is called Gaussian Curvature. Note that Gaussian curvature is
independent of our choice of sign for signed curvature. We are most concerned about whether
the Gaussian curvature is positive, negative or zero (although at times we will certainly care
about the magnitude of Gaussian curvature). A point on a surface with positive Gaussian
curvature bends in the same direction (relative to the surface normal) in any direction we
move in the tangent plane. A sphere is an example of a surface where every point has positive
Gaussian curvature (in fact, the Gaussian curvature is constant over the entire sphere).

A point on a surface that has negative Gaussian curvature is a hyperbolic point. And
a point on the surface that has zero Gaussian curvature is flat in at least one principle
direction. Thus, while a plane has zero Gaussian curvature, so does a cylinder and a cone.

The torus is an example of a surface that has positive Gaussian curvature (on the “out-
side”), negative Gaussian curvature (on the “inside”) and zero Gaussian curvature (on the
“top” and “bottom”).
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n(u, v)

S(u, v)

a(u, v)
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Figure 6.1: Reflection lines. Figure from Holger Theisel

(There is one additional type of surface worth mentioning, which is a monkey saddle.)
The term (κ1 + κ2)/2 is known as Mean Curvature. Unlike Gaussian curvature, mean

curvature depends on our choice of sign for planar curvature. Both Gaussian and mean
curvature have their uses in assessing surfaces.

A final issue is how to map the scalar curvature value to a colour for surface shading.
One method is to map the scalar value to the Hue of the HLS color space, using L=0.5 and
S=0.9 (or similar values), and then convert to RGB if needed. We still need to specify the
mapping of curvature to Hue. One mapping is to truncate the curvature range from −∞,∞
to −k,+k, and then map −k to blue, 0 to green, and +k to red.

6.6.4 Lines on a Surface

While isoparametric lines are one of the simplest forms of lines on a surface to compute,
they aren’t very useful for evaluating surface shape. Reflection Lines are lines on a surface
that are more useful. Conceptually, a reflection line is the curve on a surface obtained by
reflecting a line through the surface. Typically, rather than reflecting in the ray tracing sense,
we merely draw a curve on the surface at all points where reflection of the view direction in
the surface intersects the reflection line.

Mathematically, let the eye be at ep. Let a(u, v) be the reflection of the ray from ep to the
surface point S(u, v) through the surface normal n(u, v). Let ~a be the direction of the line
of light, and let Π be the plane containing the line of light and the point on the the surface
S(u, v). Let p̂(u, v) be perpendicular to this plane. The condition for the point S(u, v) to be
on the reflection line is

a(u, v) · p̂(u, v) = 0.
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n(u, v)
~e

p

S(u, v)

a(u, v)

Figure 6.2: Reflection lines with eye, line at infinity.

Reflection lines simplify a lot if we place the eye at infinity (so we just specify a viewing
direction ~e) and the reflection line at infinity (which we now specify with the perpendicular
p̂). We again just check that a(u, v) · p̂ = 0 as our condition. We can get a family of reflection
lines by varying the line at infinity.

Isophotes are defined from an eyepoint ep and a constant c as all points on a surface
S(u, v) where

n(u, v) · (ep − S(u, v))

|ep − S(u, v)|
= c.

Again, we can simplify things by putting the eye position at infinity, leaving an eye direction:
n(u, v) · ~e = c.

With both reflection lines and isophotes, the continuity of the lines on the surface is
one less than the continuity of the surface. So a C0 surface will yield reflection lines and
isophotes that are C−1, a C1 surface will yield reflection lines and isophotes that are C0 and
so on.

Typically, for reflection lines and isophotes, we render a set of them. For example, for
isophotes, we might render them for c = 0, 0.25, 0.5, 0.75, 1.0, giving five sets of curvess on
the surface. For a triangulated surface, we can create this line set as follows: for each triangle
vertex, we compute vi = ~e · n̂i, giving three scalar values vi. For each isophote values cj, if
cj < vi for all i or if cj > vi for all i, then the isophote is assumed not to cross the triangle.
Otherwise, we have two sets of vertices at which cj lies between the corresponding vi values.
We linearly interpolate between the two vi values to find the crossing point for the isophote
value, and draw a line segment between these two locations.

Alternatively, we could use a shader to draw the isophote on the triangle.
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Figure 6.3: Isophotes.
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Figure 6.4: Isophotes with eye at infinity.
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Figure 6.5: Isophotes on C0, C1, and C2 surfaces. Figure from Mark Belcarz

c = 0.5

v0 = 0.4

v0 = 0.6
v0 = 0.8

c = 0.5

Figure 6.6: Isophotes on a triangle.
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6.7 Subdivision Surfaces

Subdivision provides an alternative method for constructing smooth surfaces. The advan-
tages of subdivision schemes are that they handle automatically the nasty problems that
the schemes we’ve seen so far have, namely we don’t have to work to get continuity (not C1

continuity, anyway), and we can start with data meshes of arbitrary connectivity. However,
the meshes should represent a manifold - the “arbitrary” part refers to the number of edges
on a face and the number of faces meeting at a vertex (although this leads to extraordinary
vertices, which are their own problem).

6.7.1 Subdivision Curves

1. If we repeatedly subdivide a Bézier curve, then in the limit, the control polygons
converge to the curve.

2. Chaiken’s algorithm Chaiken’s algorithm was originally described as a corner cutting
algorithm: Given initial points {C0

0 , . . . , C
0
n}. Compute

C1
2i =

3

4
C0
i +

1

4
C0
i+1

C1
2i+1 =

1

4
C0
i +

3

4
C0
i+1

and repeat this process. If we let mi be the midpoint of C0
i C

0
i+1, then the point

pi =
1

4
(mi−1 + 2Ci +mi)

is a point on the curve. In the figure below, the white points are the C0, the gray
points are the C1, the small black points are the mi and the large black points are
points on the curve.
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Note that it is simpler to compute the points on the curve as

pi = (C1
2i + C1

2i+1)/2.

Further note that the curve is actually a C1 piecewise quadratic Bézier curve. The
points mi−1, C

0
i ,mi form the control points of the ith segment (for i = 1 to n). All

the algorithm is really doing is a midpoint subdivision on these curves.

6.7.2 Subdivision Surfaces

1. Subdivision surfaces are an extension of the curve subdivision idea. Essentially, we
start with a “polyhedron” (its faces are not required to be planar). At each step of
the subdivision, we add one new point for each face, edge, and vertex. In the limit,
these points will converge to a surface. The details of where the points are located and
whether we just add points for each edge, or if we add multiple points per face, etc.,
vary from scheme to scheme. We will look at a couple of schemes.

Catmull-Clark Subdivision

1. For each face, edge, and vertex of the polyhedron we will build a new vertex (call them
fi, ei, and vi respectively). We will create a set of new faces, one for each face/vertex
pair (where the vertex bounds the face) by adding in edges from face to edge vertices
and from vertex to edge vertices. The following sequence of pictures should clarify this
process.

On the left we have the initial mesh. Next, we add a new vertex for each face (shown
in white), a new vertex for each edge (shown in gray) and a new vertex for each vertex
(show in black):

Now we connect together the appropriate vertices. On the left, the old and new meshes
are superimposed, while on the right we have just the new mesh:
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2. Missing from the diagrams is how to set the location of the new points. Catmull-Clark
use the following scheme:

• Set each face vertex fi as the average of the vertices of the face;

• Set each edge vertex ei as the average of the vertices on the edge and the (new)
face vertices for the two faces adjacent to the edge;

• Set each vertex vertex vi as

vni = voi +
1

n

n∑
j=1

(mo
j − voi ) +

1

n

n∑
j=1

(fnj − voi ),

where mo are the midpoints of the old edges, voi is the vertex in the previous step,
and n is the number of edges adjacent to vi.

Alt formula:
F/n+ 2M/n+ P (n− 3)/n,

where F is the average of newly created face points, M is average of old edge
midpoints, and P is old position.

I’m not sure where first formula came from; the second formula is from the
Catmull-Clark paper.

3. Note that while the initial mesh may have faces with an arbitrary number of sides,
after one refinement all faces will have four sides.

4. Except near vertices that initially had other than four neighbors and faces that had
other than four sides, this surface converges to bicubic spline surfaces.

Doo-Sabin Subdivision

1. In the same journal issue in which Catmull-Clark subdivision appeared, the Doo-Sabin
subdivision scheme was also published. While Catmull-Clark is related to bicubic
tensor product surfaces, Doo-Sabin is related to biquadratic tensor product surfaces.

2. The idea is that starting with a mesh, for each face, we create a new vertex for each
edge of that face
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Figure 6.7: Catmull-Clark Subdivision

3. Then we create three types of new faces:

(a) For each vertex of the original mesh, we create a face from the ring of new vertices
surrounding it;

(b) For each face of the original mesh, we create a face from the ring of new vertices
inside it;

(c) For each edge of the oringal mesh, we create a new face from the four vertices
created for the two vertices of the edge.

4. Details of the location of the new vertices can be found in Farin’s book.
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The Simplest Subdivision Scheme

1. A large variety of subdivision schemes exist. For example, Jorg Peters has a scheme
where the only new points at each level of subdivision are the average of the two
vertices on each edge. New faces are constructed (one for each old face, one for each
old vertex), and the process is repeated.

Again, starting from the same initial mesh, we first subdivide each edge:

Next, we connect the edge-points to create new faces:

. . .

. . .

. . .
. . .

. .
 .

. . .

2. While simple, the surfaces created by this scheme are of extremely poor quality.

6.7.3 Details

1. There is much more written on subdivision schemes. See for example papers by Loop
and Peters for some variations. In particular, there are interpolatory subdivision
schemes.

2. Another issue of interest is meshes with boundaries. Such meshes usually require
special subdivision rules along the boundaries.

3. Subdivision surfaces solve the hard problems faced by triangular polynomial patches
(and to a lesser extent, rectangular polynomial patches): they can start with an arbi-
trary mesh and construct a surface without the hard continuity problems faced by the
polynomial schemes.



78 Mann CS 779 Winter 2020

However, they still fail the vertex consistency problem (at the extraordinary vertices,
where most subdivision schemes yield surfaces are only C1).

Usually, you can spot the extraordinary points in the final mesh (if nothing else, there
are texture mapping issues near them). Most models have locations where you don’t
mind a special point (such as the tip of the nose), and if you can place your extraor-
dinary points at these locations then usually they’re not a problem.

4. Subdivision schemes are not as easy to implement as they might look. The biggest
implementation problem is one of data structures: how do you store the data and how
do you update the mesh after subdivision. The easy data structures for handling this
don’t have all the nice properties you’d like, and that harder data structures are, well,
harder.

5. To get a smooth looking surface for rendering, you need to tessellate to a fairly finely,
and you need to generate normals. The first issue prohibits the use of heavy-weight data
structures like winged-edge, and really promotes the notion of “patch-like” evaluation:
taking a subset of the mesh, subdividing it to a fine level, rendering it, then proceeding
to the next “patch-like” region. Algorithms exist for such rendering, but they are
non-trivial (although much of the complexity is in creating an algorithm that has a
reasonable hardware implementation).

The normal question is another sticky question. Since the subdivision surface is a
limiting process, technically you need to subdivide an infinite number of times before
you obtain points on the surface. In practice, subdividing a small (3-6) number of times
produces an approximation to the surface that is sufficient for rendering. But what
about normals to the surface? Most implementations just approximate the normal by
averaging the neighbors of a vertex (at the highest level of refinement). While sufficient
for many applications, it adds a further cost and data structure issue, and is somewhat
unsatisfying.

6. Another issue facing subdivision schemes is that of parameterization. The subdivision
surface itself has no natural parameterization, which is expected since they can be used
on genus 0 surfaces which can not be fully parameterized.

However, parameterization is important in rendering, since we commonly want to tex-
ture map our surfaces. Thus, to texture map the subdivision surface, we need to find
a parameterization of the surface.

A lot of work has been done on finding parameterizations of subdivision surfaces. The
methods usually involve flattening the surface into a triangulation in the plane. Two
issues that arise are

(a) To flatten the mesh, you have to cut it, which results in seams on the surface;
smart placement of these seams is important.

(b) The flattening process is not unique. The idea is to find a flattening such that
the resulting texture map looks good.
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7. The methods above suggest ways in which to compute the vertices at each step of the
subdivision. The obvious way is not the most efficient. See the Warren-Weimer book
for details on how to efficiently compute the new vertices.

8. Nothing presented here supports the claim that the repeated subdivision converges to
a surface with smoothness of any type. Such proofs are complicated (although not
horribly so); see the Warren-Weimer book for the proofs.

9. Finally, note that many subdivision schemes face many of the shape problems that
are encountered by polynomial patch schemes. Typically, optimization methods are
required to yield reasonable looking surfaces.

In particular, while subdivision surfaces usually do reasonably well on “human smoothed”
data, they produce bumpy surfaces for more random data. By “human smoothed”,
I mean that people tend to create and smooth data in a way that results in smooth
subdivision surfaces. When sampling points on a cylinder, for example, we will sample
concentric rings, with samples also lying on lines parallel to the cylinder’s axis. When
subdividing a mesh of such data, a nice, smooth surface results.

If instead we picked random point on the surface of the cylinder, triangulated them in a
reasonable manner (ie, so that the resulting mesh was cylinder-like), then the resulting
subdivision surface will be bumpy.

While people have successfully created subdivision surfaces from laser-scan data, note
that usually this data is reduced by a smoothing process that should be considered
part of the surface construction technique.
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Chapter 7

Functional Interpolation With
Polynomials

In this section, we consider the problem of interpolating data above the plane with a single
polynomial. Because of a variety of problems in using polynomials to interpolate such data,
typically people usually use other methods such as thin-plate splines instead.

The goal of this section if to understand why these problems occur with polynomials, and
to realize that polynomials can do a much better job at interpolating data than previously
realized.

7.1 Univariate

Problem: given n+ 1 pairs (xi, yi)
Find: degree n polynomial f such that f(xi) = yi
Solution: f =

∑n
j=0 cjx

j = XC, where C = [c0, ..., cn]t and X = [1, x, ..., xn]. We want cj
such that f(xi) = yi. In matrix form,

V C = Y

where Y = [y0, ..., yn]t and Vi,j = xji . Then the solution is

C = V −1Y

V is known as the Vandermonde matrix. While the inverse exists if the xi are unique,
computation of V −1 is numerically unstable (although it is possible to get the interpolant
without inverting the matrix). And even if there is a solution, the answer may be poor.
However, the solution is unique.

7.2 Multivariate

Problem: given n sets of data Xi, zi with Xi ∈ Rd.

81
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Find: a polynomial f such that f(Xi) = zi. We are interested in the case of d = 2 (surfaces),
so f(xi, yi) = zi.

The multivariate problem is far more interesting than the univariate problem. In par-
ticular, in the univariate case, when we increase the degree of the polynomials by one, we
get one more basis function. In the bivariate case, when we increase the degree from degree
k − 1 to degree k, we get k + 1 more basis functions. Thus, we can’t interpolate our data
with a complete degree k polynomial space except in the rare case when the number of data
points is the size of a polynomial space of degree k.

So to interpolate n data points, we have to use a polynomial space where #Πk ≥ n,
where Πk is a polynomial space of degree k and #Πk is the size of Πi. Thus, we need to
choose a subset of Πk as a basis for interpolating our data.

Once we’ve chosen a basis B, we proceed as in the univariate case, constructing a Van-
dermonde matrix for the data and inverting it. But unlike the univariate case, V may be
singular (i.e., not invertible). As a simple example, if we have six points, then we should be
able to interpolate the data with a quadratic, since #Π2 = 6. However, if the xi, yi values
lie on the unit circle centered at the origin, and if p(x, y) = x2 + y2 − 1 were one of our
basis functions, then p(xi, yi) = 0 and our Vandermonde matrix would be singular. Since
x2 + y2 − 1 lies in the space of degree 2 polynomials, then V must be singular for this data
set when trying to interpolate with Π2.

Related to this, if we have nm xi, yj values that lie on a n ×m grid, then a degree nm
polynomial is required to interpolate the data, even though a much lower degree polynomial
would be indicated by the count of the data.

Things are even worse than they seem. Consider any fixed basis. For example, as a basis
for n data points, choose the smallest k such that #Πk ≥ n. Choose for our basis #Πk−1

and for the remaining ` = n−#Πk−1 basis functions, choose xk, xk−1y, xk−2y2, ..., xk−`+1y`−1.
Call this basis XBias, since we are biasing things towards the x variable. Fix any n − 1 of
the data points and move the nth data point around the plane. What you find is that there
is a curve C where if xn, yn lies on C then the Vandermonde matrix is singular. Worse, if
xn, yn is near C then the error in the interpolant is huge.

As an example, consider Figure 7.1. Suppose we want to approximate the function
y = f(x) = x3/6 with a quadratic polynomial. One way to approximate it is to sample
f(x) at no more than six points and construct a quadratic function that interpolates those
points. If we have six points, this is straightforward: we use the basis {1, x, y, x2, xy, y2} and
proceed as in the univariate case (construct a Vandermonde matrix, etc.).

But what if we have fewer than six points? The other three parts of Figure 7.1 shows
that the choice of basis functions has a huge impact on the approximation. In all three cases
we interpolate data at

x y x^3/6

0.9294600 0.3689200 0.1338261

0.9697300 0.2441800 0.1519852

-0.2211900 -0.9752300 -0.0018036

-0.9653400 -0.2610000 -0.1499304
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Figure 7.1: Upper left: y = x3/6. Upper right: interpolate data at four points using
{1, x, y, x2}. Lower left: interpolate data at five points using {1, x, y, x2, y2}. Lower right:
interpolate data at five points using {1, x, y, x2, xy}.

and in the bottom row we also interpolate

-0.4233400 0.9059700 -0.0126449

I.e, in the upper right we interpolate the data at four point; in both bottom figures, we
interpolate the data at five points. On the bottom row, we see that choosing y2 for the fifth
basis function leads to an approximation that is 10,000 times worse than if we choose xy for
the fifth basis function.

There is a construction that tries to make a smart choice of basis functions and avoid
these problems. In particular, the above problems occur because we fixed the polynomial
basis without considering the data we want to interpolate. The Least is a construction
that constructs an interpolation basis by looking at the data we want to interpolate. The
Least iterates through the data points, selecting the next data point to interpolate and the
next polynomial to add to the basis by choosing the pair that minimizes the error in the
interpolant. This scheme is vastly superior to working with a fixed basis because it avoids
choosing a data point that is near the Lagrange polynomial for the previously chosen data
points, and it chooses the basis function for this data point to maximize the reduction in
error of the interpolant.

As a bonus (a big bonus), with some modifications, the Least will generate either a
Newton basis or a Lagrange basis. For our purposes, this means that the Vandermonde will
either be triangular or diagonal, both of which are numerically stable to invert.
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The Least isn’t perfect, however, and in some situations it will be forced into a Bad
Choice of basis functions. To understand the Least, we have to introduce varieties and
ideals.

7.3 Varieties and Ideals

Definition: A subset V ⊂ Rd is called a variety if there exists a collection of polynomials
P ⊂ Π(Rd) such that p(v) = 0 for all v ∈ V and for all p ∈ P .

Closely related to varieties is the notion of an ideal.

Definition: An ideal is a collection of polynomials I such that

1. 0 ∈ I

2. I is closed under addition; i.e., if p, q ∈ I then p+ q ∈ I

3. I is closed under multiplication by Π, i.e, if q ∈ I then for any polynomial p, pq ∈ I.

In short, an ideal I is a collection of polynomials that are 0 at all points in a collection
of points V known as a variety.

Our interest in ideals and varieties is that for data interpolation using a fixed basis, along
a particular variety, the Vandermonde matrix will have no inverse.

7.4 Newton and Lagrange Bases

A Newton basis for a point set Θ is {νi ∈ Π : i = 1, ..., n} such that

νi(θj) = 0 if j < i, νi(θi) 6= 0.

A Newton basis yields a lower triangular Vandermonde matrix.

A Lagrange basis {`θ : θ ∈ Θ} is such that

`θ(ϑ) =

{
0 if ϑ 6= θ
1 if ϑ = θ

For a Lagrange basis, the Vandermonde is the identity matrix, which means

f =
∑
θ∈Θ

f(θ)`θ.

In our variation of the Least, we will construction a Newton basis, which can in turn be
converted to a Lagrange basis if desired.
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7.5 The Least

The presentation here is not on the Least as originally presented by de Boor and Ron,
who presented things as some somewhat mysterious matrix operations. Instead, this is a
more symbolic presentation, showing the mathematics behind the Least and polynomial
interpolation in general. The approach will be to construct a Newton bases to interpolate
the data.

Let L(Θ) = {`θ ∈ Π(Rd) : θ ∈ Θ} be any collection of Lagrange polynomials on Θ. The
projection of a function f on to L is

PL(f) =
∑
θ∈Θ

f(θ)`θ,

which should look similar to interpolation using a Lagrange basis. The error in this projection
is

f − PL(f) = f −
∑
θ∈Θ

f(θ)`θ.

Define gL,α as the error of interpolating the monomial tα with L(Θ):

gL,α = tα −
∑
θ∈Θ

θα`θ(t),

where t is d-variate, and α ∈ Zd.
Our interest in gL,α is that the set {gL,α : α ∈ Zd+} covers the ideal I(Θ). Since we will

be looking for Newton polynomials, the set of gL,α’s for the θi that we’ve already processed
is a good place to look for our next basis function.

The following theorem will provide the formulas needed for some of the update steps of
our algorithm.

Theorem: Let Li−1 = {`1,i−1, ..., `i−1,i−1} be a Lagrange basis for Θi−1. Given any `i,i(t) ∈
I(Θi−1) such that `i,i(θi) = 1, one can construct a Lagrange basis Li = {`1,i, ..., `i, i} for Θi

with
`j,i(t) = `j,i−1(t)− `j,i−1(θi)`i,i(t), for all j < i. (7.1)

We will make an array of the gL,α’s. Initially this array will be

gL0 = [1, tx, ty, t
2
x, txty, t

2
y, ...].

One can construct gLi
, i > 0 by

gLi
= gLi−1

− gLi−1
(θi)`i,i(t). (7.2)

Note in particular that gLi
covers the ideal I(Θi). Assuming that gLi−1

covers the idea
I(Θi−1), it is straightforward to check that for gi ∈ I(Θi) we have gi(θj) = 0 for j < i:

gi(θj) = gi−1(θj)− gi−1(θj)`i,i(θj) = 0,
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for some gi−1 ∈ I(Θi−1), since gi−1(θj) = 0 and `i,i(θj) = 0. When i = j, we also have
gi(θi) = 0, since `i,i(θi) = 1.

Repeatedly applying this theorem to construct a set of `i,i’s, it’s easy to see that the set
{`i,i : i = 1, ...,#Θ} is a Newton basis for Θ, giving the following algorithm for constructing
a Newton basis to interpolate Θ.

Initialize gL0 = [tα : α ∈ Zd+]
for i=1 to #Θ

pick θi ∈ Θ\{θ1, ..., θi−1}
select `i,i =

∑
cαgα such that `i,i(θi) = 1.

gLi
= gLi−1

− gLi−1
(θi)`i,i(t)

end

Return Newton Basis {`i,i : i = 1, ...,#Θ}

As an additional step, we can compute a Lagrange basis by using equation (7.1) inside the
loop.

Missing from this algorithm are details about the steps “pick θi” and “select `i,i”. In the
next section, we will illustrate the algorithm with a simple choice of θi and `i,i and in the
section after that, we will give an example showing that this is (at times) a very poor way
to pick `i,i.

7.5.1 Example

As an example of the algorithm, we will choose the data points in the order in which they
are given, and we will choose the first non-zero element in gLi

as our next basis function
(which we have to scale to obtain the requirement that `i,i(θi) = 1). This is essentially what
XBias is doing.

Consider the point set Θ = {(1, 0), (0, 1), (−1, 0), (0,−1)}. We start with

gL0(t, s) = [1, tx, ty, t
2
x, txty, t

2
y, . . . ].

With θ1 = (1, 0), select `1,1(t) = 1, then

gL1(t, s) = gL0(t, s)− `1,1(t)gL0((1, 0), s)

gL0((1, 0), s) = [ 1, 1, 0, 1, 0, 0, . . . ]

and gL1(t, s) = [ 0, tx − 1, ty, t2x − 1, txty, t2y, . . . ]

With θ2 = (0, 1), select `2,2(t) = (tx − 1)/(−1) = 1− tx, then

gL2(t, s) = gL1(t, s)− `2,2(t)gL1((0, 1), s)
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gL1((0, 1), s) = [ 0, −1, 1, −1, 0, 1, . . . ]

and gL2(t, s) = [ 0, 0, tx + ty − 1, t2x − tx, txty, t2y + tx − 1, . . . ]

With θ3 = (−1, 0), select `3,3 = (tx + ty − 1)/(−2) = −1
2

((tx + ty − 1), then

gL2((−1, 0), s) = [ 0, 0, −2, 2, 0, −2, . . . ]

and gL3(t, s) = [ 0, 0, 0, t2x + ty − 1, txty, t2y − ty, . . . ]

Finally, select `4,4(t) = −1
2

(t2x + ty − 1), which results in a Newton Basis:

{
1, 1− tx,

−1

2
(tx + ty − 1),

−1

2
(t2x + ty − 1)

}
.

If we continue the process once more, we have

gL3((0,−1), s) = [ 0, 0, 0, −2, 0, 2, . . . ]

and gL4(t, s) = [ 0, 0, 0, 0, txty, t2x + t2y − 1, . . . ]

This gives us the set

{txty, t2x + t2y − 1}

which generates I(Θ).
Performing the back substitution from (7.1), we get the Lagrange Basis of{

1

2
(t2x + tx),

−1

2
(t2x − ty − 1),

1

2
(t2x − tx),

−1

2
(t2x + ty − 1)

}
.

The choice of `j,j(t) in this example was made for illustration of the algorithm and is a
very poor method for choosing the basis function as shown in the next section.

7.5.2 A Second Example

This second example shows that taking the approach used in the previous example, one basis
function dominates the interpolant.

As our data, choose the points (0,0) (0,1) (1,0) (1,1) (0.25,0.5) (0.76,0.58), where the last
point was chosen to be near variety through other five points. For this example, we set the
z-value to interpolate as z = sin(x) sin(y).

Choosing basis functions as described in the previous section we get the following basis
functions, together with the weights that are associated with the interpolant:
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In the figure, the number after the * symbol is the basis function, while the number in front
of the * symbol is coefficient required to interpolate that data; the images are of the unscaled
basis functions.

The result is that the interpolant looks like single basis function:

Left: `6,6, Right: Interpolant.

7.5.3 The Least

The Least, which was concerned about correctness and computational efficiency, spends a
lot of effort on the “pick θi” step; for the approach here, this step is less important because
more information is retained during the computation, allowing us to address the problems
the Least was avoiding in a different manner.

More important is the “select `i,i” step. While XBias does not build a Newton basis,
the basis it does build is equivalent to the above algorithm, where in the “select `i,i” step,
it choose the next non-zero gα as the next basis function. But note the requirement that
`i,i(θi) = 1. If the next gα(θi) is very small, then cα will be huge, and this one polynomial
will dominate the interpolant (away from the θ’s). This is what we’re seeing when XBias
blows up.
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The Least, on the other hand, chooses a weighted average of the non-zero gα’s of lowest
degree. As long as one of the gα’s used in the average is not small at θi, then the cα’s will be
reasonable. This “as long as” requirement can fail, however, in particular when interpolating
#Πk data points (in which case there is a single gα) or if all the gα’s intersect at a single
point. This latter problem is somewhat rare, although it is easy to construct cases where it
happens when interpolating #Πk − 1 data points (i.e., you just need two gα’s to intersect).
In these cases, it would be better to increase the degree of the polynomials being used.
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Chapter 8

Higher Dimensions

8.1 Higher Dimensional Bézier Simplices

• Generalized Bernstein Polynomials k variate Bernstein polynomials of degree d:

Bd
~ı (b1, . . . , bk) =

(
d

~ı

)
bi01 b

i1
1 . . . b

ik
k

where (
d

~ı

)
=

d!

i0!i1! . . . ik!

~ı = (i0, . . . , ik), ij ≥ 0, |~ı| =
∑
j

ij = d

• Generalizing the dimension.

We can use the generalized Bernstein polynomials to construct “surfaces” of higher
dimension. Instead of choosing a domain simplex of dimension 2, we choose one of
dimension d. Simplices of dimensions 1, 2, and 3 are drawable, as are their control
nets. What appears below is an example of these three cases:

91
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In the top row are three domains. In the bottom row are quadratic control nets.
Evaluation, regardless of dimension, is done with a de Casteljau algorithm similar to
the one for surfaces.

• Bézier Simplices Any polynomial function can be written as

Q(u) =
∑
~ı

V~ıB
d
~ı (b0, . . . , bk)

where

– V~ı are control points,

– b0, . . . , bk are barycentric coordinates of u relative to domain simplex

• Example Simplices

V21V12

V3003V

03V V30V12 V21

F(u)

V300 V030

V003

V201

V102

V300

V030

V003

F(u)

V

VV210 120

021

V012
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V3000

V

V

0300

0030

V0003

. . .    

8.2 S-patches

1. So far we have looked at three sided patches and four sided patches. Suppose we want a
patch with an arbitrary number of sides. How do we construct such a patch? S-patches
(or Simplex-patches) provide one such construction.

2. The basic idea behind S-patches is to map our polygonal domain into a high dimen-
sional simplex, and then map back to our 3 space with a high dimensional Bézier
map:

S

E B

Thus, our S-patch S is given by the composition of E and B:

S = B ◦ E

The question is: how do we construct E?

3. Assume our domain polygon is given by p1, . . . , pn. We first construct the functions
αi(p) as

αi(p) =
4ppipi+1

P
,

where P is chosen so that αi(pi+2) = 1. Note that αi(e) = 0 for all e on the segment
pipi+1.

Next, let
Π(p) = α1(p)α2(p) . . . αn(p)

and let

πi(p) =
Π(p)

αi−1(p)αi(p)
.
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Finally, let

`i(p) =
πi(p)

π1(p) + . . .+ πn(p)
.

Note the following:

• ∑ `i(p) = 1 by construction

• αi(p) ≥ 0 for p in our polygon, and therefore `i(p) ≥ 0 for p in our polygon.

We now use the ` to form our map from the regular n-gon to our n− 1 simplex:

L(p) = `1(p)v1 + . . .+ `n(p)vn

Note that

• L(pi) = vi since αi−1(vi) = αi(vi) = 0

• For ei is on the edge pipi+1, we have L(ei) = e∗i , for some e∗i on the edge vivi+1.

4. Notes on S-patches

• S-patches are rational polynomial functions for degree (n − 2)m, where n is the
number of sides of the domain and m is the degree of B.

• The boundaries of S-patches are polynomial curves.

• Three sided S-patches are triangular Bézier patches.

• Four sided S-patches generalize n × n tensor product Bézier patches. Basically,
four sided S-patches have two interior control points for every one interior control
point of a tensor product patch. If we make each pair of point be the same point,
then the S-patch becomes a tensor product Bézier patch.

• There is a de Casteljau evaluation algorithm.

5. Example control net: degree 2, five sided

8.2.1 References

S-patches: A Class of Representations for Multi-Sided Surface Patches, Tony DeRose and
Charles Loop, Technical Report 88-05-02, Department of Computer Science, FR-35 Univer-
sity of Washington, Seattle, WA, 98195, May 1988.
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8.3 Polynomial Composition

1. Problem Statement

• Given: Two polynomials F and G in Bézier form.

• Find: F ◦G in Bézier form.

• Note: Domain of F better be range of G.

• Variations for tensor products, rationals, and B-splines

2. Applications

• Evaluation: Let G be the constant polynomial

• Subdivision: Let G be a linear polynomial parameterized over the interval of
interest

• Polynomial Reparametrization

• Freeform deformation

• Triangular ⇔ tensor product forms

• Representation of trimmed tensor product as an S-patch

Note: some of these may require rational functions

3. Evaluation / Subdivision / Reparametrization

F

G

F

G

F

G

4. Product of Bernsteins

• Define ~ı+ ~ = (i0 + j0, . . . , ik + jk).
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• Let I = (~ı1, . . . ,~ım) and |I| = ∑
j~ıj.

• Let BI(u) = B~ı1(u) · . . . B~ım(u)

• Then
BI(u) = C(I)B|I|(u)

where

C(I) =

(
|~ı1|
~ı1

)
. . .
(
|~ım|
~ım

)
(
||I||
|I|

)
5. Polynomial Composition

• Given: F : Y → Z and G : X → Y where

F (u) =
∑

~ı, |~ı|=m
F~ıB

m
~ı (u)

(relative to a domain simplex in Y ) and

G(u) =
∑

~ı, |~ı|=`
G~ıB

`
~ı (u)

(relative to a domain simplex in X)

• Find: H = F ◦G relative to G’s domain simplex.

• Note: Should be more careful with definition of ~ı

6. Derivation

H(t) = F (G(t))

= f(G(t), . . . , G(t))

= f(
∑
~ı1

G~ı1B~ı1(t), . . . ,
∑
~ım

G~ımB~ım(t))

=
∑

~ı1,...,~ım

f(G~ı1 , . . . , G~ım)B~ı1(t) · . . . ·B~ım(t)

=
∑
I

f(GI)BI(t), f(GI) = f(G~ı1 , . . . , G~ım)

=
∑
I

f(GI)C(I)B|I|(t)

We can extract the control points of H:

H~ı =
∑
|I|=~ı

C(I)f(GI)
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7. Example

G G FG201102 F2002

F11

FG

H(0,4) = f(G(0,2), G(0,2))

H(1,3) = f(G(0,2), G(1,1))

H(2,2) =
(
f(G(2,0), G(0,2)) + f(G(1,1), G(1,1))+

f(G(0,2), G(2,0))
)
/3

H(3,1) = f(G(2,0), G(1,1))

H(4,0) = f(G(2,0), G(2,0))

8. Implementation

• Naive implementation very inefficient since, for example, we evaluate at all per-
mutations of each I:

f(G(2,0), G(0,2)) = f(G(0,2), G(2,0))

• Improve by only evaluating at I where ~ıj <=~ıj+1

(weight by number of permutations)

• This gives roughly m! speedup (m is degree of F ).

• Can further improve if reuse partial evaluations of blossom.

G(2,0) (2,0)G

(2,0)f(G     ,G     )(2,0) f(G     ,G     )(1,1)(2,0)

G(2,0) G(1,1)

9. Code

RecComp(F,G,H,n,~m,~s,c,µ)
if n = F.degree then

H.cp~s += F.cpn0
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else

for all ~ı ≥ ~m in increasing order

// Eval computes F [n+1] from F [n]

EvalBlossomArg(F,n+1,G.cp~ı)

if ~ı = ~m then µ′ = µ+ 1elseµ′ = 1

RecComp(F,G,H,n+1,~ı,~s+~ı, c ∗
(
|~ı|
~ı

)
/µ′, µ′)

endfor

endif

10. Generalized Composition

• Compose a blossom f with a set of polynomials:

f ◦GI(u) = f(G1(u), . . . , Gm(u))

• If we let
GI = (G1

~ı1
, . . . , Gm

~ım),

then control point formula is

H~ı =
∑
~ı

f(GI)C(I)

• Note: need to be careful about how we define I.

11. Degree Raising Let Lr(t) be the degree r representation of the linear function.

Then we degree raise F by looking at

f
(
L2(t), L1(t), L1(t), . . . , L1(t)

)
12. Implementation

• The code is basically the same, but for loop changes.

• Thus, we can reuse partial blossom evaluations, but can’t use symmetry as effec-
tively.

• In the case of degree raising, we can derive standard formula from the composition
formula.

8.3.1 References:

Functional Composition Algorithms via Blossoming, by Tony DeRose, Ronald Goldman,
Hans Hagen, and Stephen Mann, in TOG, Vol 12, No 2, April 1993

http://www.cgl.uwaterloo.ca/~smann/Papers/tog93.ps

An Optimal Algorithm for Expanding the Composition of Polynomials, by Wayne Liu
and Stephen Mann, in TOG, April 1997.
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8.4 A-patches

8.4.1 Implicit Surfaces

1. Given a function f(x, y, z) over R3, an implicit surface is the set of all x, y, z such that
f(x, y, z) = 0.

Usually, we have more information. The zero set will normally divide space into two
halves:

f(x, y, z) < 0 inside

f(x, y, z) = 0 on

f(x, y, z) > 0 outside

If f is a polynomial function of x, y, z, then f is said to be algebraic.

Similarly we can define an implicit curve f(x, y) over R∈ as f(x, y) = 0 with a similar
inside/outside test.

2. Example:
f(x, y, z) = x2 + y2 + z2 − 1

The set of x, y, z such that f(x, y, z) = 0 is the sphere. If f is less than zero, then
the point is inside the sphere. If f is greater than zero, then the point is outside the
sphere.

3. Advantages of implicit (algebraic) surfaces:

(a) Inside-outside test

(b) Ray tracing becomes root finding

(c) Offsets of algebraic surfaces are algebraic surfaces

This is useful for CNC machining.

4. Disadvantages of implicit surfaces

(a) Tesselation is hard

(b) Multiple sheets, multiple zeros, degeneracies

• hard to control, use in modeling system

• rendering is even more difficulty

8.4.2 A-patches

1. Ideas:

(a) Control algebraic in small region



100 Mann CS 779 Winter 2020

(b) Make a patch inside a triangle/tetrahedron with desired properties inside the
triangle/tetrahedron

2. Bernstein-Bézier form:

Given a tetrahedron V = [p0p1p2p3], let α = (α0, α1, α2, α3) be the barycentric coordi-
nates of a point p. Normally we will want p ∈ V .

Then define our surface to be

F (p) =
∑
|~ı|=n

b~ıB
n
~ı (p).

Our surface patch will be all p ∈ V such that F (p) = 0.

Pictorially, we can think of control “points” (scalar values) as being distributed uni-
formly through V :

b

b

b

0030

0003

0300

3000

b

Similarly, over a triangle T = [p0p1p2], we can express a point P in its barycentric
coordinates relative to T and use the bivariate Bernstein polynomials to express our
curve in algebraic form over the triangle.

3. A few simple, obvious facts

(a) If all b~ı > 0, then F (p) > 0 for all p ∈ V . Similarly for b~ı < 0.

So to have a non-void surface patch, a necessary (but not sufficient) condition is
that some b~ı are positive and some are negative.

(b) If bnei = 0, then F (pi) = 0 and the surface passes through the corner of the
tetrahedron.

(c) Along a face of V , only the control points have non-zero weight. Thus, C0 continu-
ity between patches in adjacent tetrahedron is easy: Just have the same boundary
control points.

4. A few useful, not-so-obvious facts



Mann CS 779 Winter 2020 101

(a)

b(n−1)ei+ej = bnei +
1

n
< (pj − pi),∇f(pi) >

where

∇f(p) =

[
∂f(p)

∂x
,
∂f(p)

∂y
,
∂f(p)

∂z

]
.

This will be used to construct a patch that interpolates both position and normal
at a corner of the tetrahedron.

(b) Let f and g be two polynomials defined on tetrahedra [p0p1p2p3] and [p′0p1p2p3]
respectively (i.e., they share the face p1p2p3).

Then f and g are C1 at the common face iff they are C0 there and

g1i1i2i3 = β0f1i1i2i3 + β1f0i1i2i3+0100 + β2f0i1i2i3+0010 + β3f0i1i2i3+0001,

where β are the barycentric coordinates of p′0 relative to [p0p1p2p3].

This follows from blossoming.

5. Three-sided patch

If any open line segment (pj, α∗) with α∗ on the face opposite pj intersects SF at most
once (including multiplicities) then we call SF a three-sided j-patch.

∗α

Note: with this definition, the surface may leave and re-enter the tetrahedron (and
thus may have disjoint components within the tetrahedron).

6. Four-sided patch

If any open line segment (α∗, β∗) with α∗ on segment pipj and β∗ on segment pkpl
intersects SF at most once (counting multiplicites) then we call SF a four-sided ij-kl-
patch.
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α

*β β*

α**

Again, the surface may leave and re-enter the tetrahedron, and we may have degen-
eracies. In fact, we will be using the degeneracy shown on the right.

7. A variety of lemmas are needed about non-singularities, but the following theorems
are the results we need to construct our patch network:

Theorem: If there exists k (with 0 ≤ k < n) such that

b~ı ≥ 0 ij = 0, . . . , k − 1,

b~ı ≤ 0 ij = k + 1, . . . , n,

and
∑
ij=0 b~ı > 0 and

∑
ij=m b~ı < 0 for at least one m (with k < m ≤ n) then SF is a

three-sided patch.

What this says is that the coefficients near one vertex are negative and those near the
opposite face are positive. Plus, there is one layer in between where the coefficients
can be either positive or negative.

Note also that we can “flip the sign” and have the positive coefficients near a vertex
and the negative ones near the opposite face.

A similar theorem can be stated to get four-sided patches (essentially, layer the tetra-
hedral array from one edge to the opposite edge, and have one “half” be positive and
the other negative, with a layer in between that can be either).

Both theorems provide sufficent but not necessary conditions to get three- and four-
sided patches.

8. If in the above theorem, we have 0 < k < n (i.e., we don’t allow k to be equal
to 0), then it’s straightforward to prove that the A-patch is singled sheeted in the
triangle/tetrahedron, and that there is exactly one zero on line segments from the
corner of one sign to the edge/face of the opposite sign (or in the case of four-sided
patches, along line segments between points on the edges of opposite sign).

We will begin by considering an A-patch triangle. We can perform 2-1 subdivision from
the point of one sign to any point on the edge of opposite sign. Since 2-1 subdivision
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can be performed by doing curve subdivision one each row of the patch, we see that
the control points along the split edge will be a sequence of positive values followed by
a sequence of negative values. By the variation diminishing property, this implies that
there is exactly one zero along this split line, which is the desired result.

For three-sided patches, the same proof applies, only we need to use 3-1 subdivision
of the tetrahedron. This 3-1 subdivision is readily seen to be a generalization of 2-1
subdivision of triangles, and can be performed by doing ”triangle” subdivision on each
layer of the tetrahedron. Our result immediately follows.

The proof for four-sided patches is similar and left as an exercise for the reader.

As a side note, to find the point on the curve/surface, we need to doing a numerical
search along the line segment between the vertex and a point on the opposite side.
After doing the 2-1 split (or 3-1 split), we can extract the edge control points and
perform this search in a univariate setting, rather than bi- or tri-variate.

9. Note that if we have a three-patch or a four-patch that is a single piece, then it is
reasonable to tesselate them into triangles. For a three-patch, we just place a triangular
grid on the α∗ side, and root find along each (pj, α∗) segment to find the point on the
surface.

For a four-sided patch, we sample each edge and create a tensor product “triangulation”
(with degeneracies at each end).

If the surface passes through the face of the tetrahedron, then tesselation is more
difficult, but in this A-patch construction, the problem is readily resolved as shown in
the next section.

8.4.3 Simplicial Hulls

1. Eventually, we will build a C1 piecewise algebraic surface with A-patches that inter-
polate the vertices of a triangular polyhedron.

Since each A-patch is contained within a tetrahedron, as a first step, given a triangular
polyhedron, we need to build a “tetrahedralization” of the space around the polyhedron
into which we will build our C1 surface.

Based on the normals, we can determine (roughly) where the surface will go.

2. Above and/or below each face, we will put a tetrahedron.
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Then use two more polyhedron to fill in the gaps.

In some configurations of the normals, we will get twice as many tetrahedrons:

2

2

1

1

d12

a

b

c
d

c

a

b 1

2

3. See the paper for details; in particular, where to place the extra vertices of the tetra-
hedron. And degenerate cases for their construction. Note in particular the various
cases based on the normals at an edge. An edge may be convex (positive or negative)
or non-convex, or possible zero-convex. Faces may also be convex, etc.

4. As an extra note, the surface may be on both sides of a data triangle. However, the
surface will lie within a pair of tetrahedron that share the same α∗ face. And if we look
at the two line segments from two vertices to any α∗ point, this pair of line segments
will intersect the surface in exactly one point:
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∗α

Again, tesselation will be easy.

8.4.4 C1 Construction Ideas

1. We will not present the complete construction here as it is fairly complicated (volume
vs surface).

The idea is to construct a piecewise algebraic cubic, working face pair at a time.

Note that for each pair of faces in the polyhedron, there will be between 4 to 8 tetra-
hedron in the simplicial hull.

2. Based on the normals at the four vertices in a face pair, there will be three major cases,
with additional subcases and special cases. These cases correspond to combinations of
convex and non-convex faces meeting one another, with the subcases handling positive
and negative convexity. Co-planar faces are a special case.

The general idea of the construction is as follows:

(a) Set/restrict face vertice of adjacent polyhedron to be the same. This gives C0

continuity.

(b) Set to 0 the corner vertices corresponding to the vertices of polyhedron.

This will interpolate our data points.

(c) Use the normal conditions to set (most of) the boundary control points. Since
our corner points are 0, each point will be set via a formula like

b =< (pi − pj), nj > /3
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(d) The tops of the face pyramids are free parameters.

(e) The C1 conditions impose a relationship between CP’s in A and B, so treat two
of the relevant CP’s as set with two to be determined later.

(f) The C1 conditions impose a relationship between CP’s in B and B’, which sets
more CP’s, with one to be determined later.

The constructions continues, with further steps. Basically, CP’s are set to get continu-
ity between each pair of tetrahedron. And as noted earlier, there are several different
constructions based on the normals to the face pairs.
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Some where, the vertex consistency problem must get solved, but I couldn’t see it, and
it isn’t explicitly mentioned. However, it appears that in general they have enough
degrees of freedom to solve the v.c. problem, but for co-planar faces they lose a degree
of freedom and have to subdivide a tetrahedron to solve it (a.k.a. a Clough-Tocher
split).

3. Note that there are a lot of degrees of freedom in this construction.

8.4.5 References:

Modeling with Cubic A-Patches, Chandrajit Bajaj, Jindon Chen, and Guoling, ACM Trans-
actions on Graphics, Vol 14, No 2, April 1995.

8.5 Universal Splines

1. Basic idea: map spline to high dimensional space where there will be no degeneracies.
Then, define blossom as intersection of osculating flats.

2. Osculating Flats. Define OsckF (u) as the space spanned by F ′(u), F ′′(u), . . . , F (k)(u),
shifted by F (u). Ie, if T is the space spanned by the first k derivatives, then OsckF (u) =
F (u) + T . This is known as the the kth osculating flat of F at u.

Note the following:

• Osc0F (u) = F (u)

• Osc1F (u) is the tangent line of F at F (u).

• Osc2F (u) is the plane passing through F (u) spanning the first and second deriva-
tive vectors.

It can be proven that the kth Bézier control point of a non-degenerate polynomial F
can be constructed by intersecting Osculating flats:

Pk = OsckF (0) ∩Oscn−kF (1).

Further, if the expression

f(u<µ1>1 , . . . , u<µh>n ) =
h⋂
i=1

Oscn−µiF (ui)

is always well defined. It should be clear that f is symmetric and that f(u<n>) = F (u).
It can also be shown that f is symmetric. By the blossoming principle, f must be the
blossom, and thus we have an alternate definition for the blossom of F .
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3. This construction for the blossom fails if F is not a general polynomial. I.e., if F is
degree n but lies in a space of dimension strictly less than n, then the osculating flat
intersections fail to have the desired properties.

Note, however, that Universal splines were constructed so that the control points of
each segment are in genearal position. Seidel exploited this fact to use the osculating
flats of the Universal Spline to for the blossom of a geometrically continuous spline.

8.5.1 References:

Polar Forms for Geometrically Continuous Spline Curves of Arbitrary Degree, Hans-Peter
Seidel, ACM Transcations on Graphics, Vol 12, No 1, January 1993.



Chapter 9

Wavelets

We shall begin with an intuitive development of wavelets taken from Stollnitz et al.

9.1 Intuition

1. Take a discrete signal (image).

Decompose it into a sequence of frequencies.

Use compact support basis functions rather than infinite support sin and cos.

Construct a vector space using “unit pixels” as basis elements (piecewise constant
functions).

Average to get low frequencies.

Construct “detail functions” to recover detail.

Unit pixel bases form nested sequence of vector spaces, with the detail functions
(wavelets) being the difference between these spaces.

9.2 1-D Haar

1. Suppose we have the coefficients

[9 7 3 5]

where we think of these coefficients as 1-D pixel values

109
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The simplest wavelet transform averages adjacent pixels, leaving

[8 4]

Clearly, we have lost information. Note that 9 and 7 are 8 plus or minus 1, and 3 and
5 are 4 minus or plus one. These are our detail coefficients:

[1 − 1]

We can repeat this process, giving us the sequence

Resolution Averages Details
4 [9 7 3 5]
2 [8 4] [1 -1]
1 [6] [2]

2. The Wavelet Transform (wavelet decomposition) maps from [9 7 3 5] to [6 2 1 –1] (i.e.,
the final scale and all the details).

The process is called a Filter Bank.

No data is gained or loss; we just have a different representation. In general, we expect
many detail coefficients to be small. Truncating these to 0 gives us a lossy compression
technique.

3. Vector spaces.

We can think of our image as a vector space.

The pixels are the elements of the space.

Let [0,1) be constant. Let V 0 be the space of all such functions.

Divide the interval in half to get [0,1/2) and [1/2,1) be constant over each interval.
Call this V 1.

Continue in this fashion, creating space V j which includes all piece-wise constant func-
tions over intervals of size 2−j over [0,1).

Note that V 0 ⊂ V 1 ⊂ V 2 ⊂ . . .
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4. Basis.

We need a basis for each vector space.

Basis function for V j are called scaling functions.

For Haar, can use
φji (x) = φ(2jx− i)

where φ(x) = 1 for 0 ≤ x < 1 and 0 otherwise.

Support of a function refers to the region over which the function is non-zero. Note
that the above basis functions have compact support, meaning they are non-zero over
a finite region.

5. Inner Product.

Next, we need an inner product:

< f |g >=
∫ 1

0
f(x)g(x)dx

Two vectors are said to be orthogonal if < u|v >= 0.

Define a new vector space W j that is the orthogonal complement of V j in V j+1. I.e.,
W j is the set of all functions in V j+1 that are orthogonal to V j.

A basis for W j are called wavelets. Important properties:

• W j together with V j for V j+1

• Every ψji of W j is orthogonal to every φji of V j.

6. Haar Wavelets.

ψji (x) = ψ(2j − i)

where

ψ(x) =


1 for 0 ≤ x < 1/2
−1 for 1/2 ≤ x < 1
0 otherwise
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7. Example again.

Originally, w.r.t. V 2,

I(x) = 9φ2
0(x) + 7φ2

1(x) + 3φ2
2(x) + 5φ2

3(x)

Rewriting w.r.t. V 1 and W 1,

I(x) = 8φ1
0(x) + 4φ1

1(x) + 1ψ1
0(x) + (−1)φ1

1(x)

Rewriting the φs in terms of V 0, W 0,

I(x) = 6φ0
0(x) + 2ψ0

0(x) + 1ψ1
0(x) + (−1)φ1

1(x)

5x

6x

3x

9x

7x

8x

1x

-1x

4x

-1x

1x

2x

8. Orthogonality and Normality

Note that the basis functions in any one basis are mutually orthogonal. Such a basis
is said to possess the property of orthogonality.

A second useful property is normalization. This property requires that < u|u >= 1.
We can modify our Haar basis to obtain normalization:

φji (x) =
√

2jφ(2jx− i)
ψji (x) =

√
2jψ(2jx− i)

This changes the coefficients by a factor of
√

2j. In our example, the normalized
coefficients become

[6 2 1/
√

2 − 1/
√

2]

.
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9.3 Wavelet Compression

1. Lossless image compression – how do we represent an image using as few bits as pos-
sible?

Pigeon hole principle tells us we’ve lost before we start. Have to have expectations
about image before you can achieve any compression.

Lossy compression involves two main steps: Loosing part of the data, and then per-
forming lossless compression on what’s left.

2. Can use wavelets to perform simple lossy part of compression.

Need a goal function. For example, try to minimize the square of the L2 error. For
normalized Haar, this is easy. Let f be our image in wavelet form, let f̂ be our wavelet
approximation where we only use m of the wavelet coefficients. Order our coefficients
in some order to be determined later. Then

||f(x)− f̂(x)||22 = < f(x)− f̂(x)|f(x)− f̂(x) >

=

〈 ∑
i=m+1

ciui|
∑

j=m+1

cjuj

〉

=
∑

i=m+1

∑
j=m+1

cicj < ui|uj >

=
∑

i=m+1

c2
i

If we order our coefficients in decreasing magnitude, then error is minimized.

3. Notes/Questions:

• Is L2 a good metric?

Do people see L2 error?

No. But it’s hard to write a formula for the human visual system’s error function
that we want to minimize.

• To re-compose our image, we still need to know which coefficients we keep. Either
tag each coefficient with its index, or keep complete set of coefficients with lots of
zero coefficients. Then apply lossless compression.

9.4 2D Haar and Image Compression

• Standard decomposition: Apply 1-D Haar to each row. Then apply 1-D Haar to each
column.

This gives us all combinations of the φ and ψ functions.
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• Nonstandard decomposition: Apply one step of 1-D Haar to each row. Then apply
one step of 1-D Haar to each column. Repeat on quadrant containing averages in both
directions.

This gives us new φ and ψ functions

φφ(x, y) = φ(x)φ(y)

φψ(x, y) = φ(x)ψ(y)

ψφ(x, y) = ψ(x)φ(y)

ψψ(x, y) = ψ(x)ψ(y)

The first of these is a scaling function, the last three are wavelet functions.

We can now define our basis functions:

φφ0
0,0(x, y) = φφ(x, y)

φψjk.`(x, y) = φψ(2jx− k, 2jy − `)
ψφjk.`(x, y) = ψφ(2jx− k, 2jy − `)
ψψjk.`(x, y) = ψψ(2jx− k, 2jy − `)

• Image compression in similar fashion, except it’s expensive to sort coefficients.

9.4.1 References:

Wavelets for Computer Graphics, Eric Stollnitz and Tony DeRose and David Salesin
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