CS 341: ALGORITHMS

Lecture 10: graph algorithms |

Readings: see website

Trevor Brown

hittps://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

GRAPHS

« AgraphisapairG = (V,E)

IV contains vertices

E contains edges

 An edge uv connects
two distinct vertices u, v

* Also denoted (u, v)

Graphs can be undirected

... or directed
« meaning (u,v) # (v, u)

PROPERTIES OF GRAPHS °<_,°

« Number of vertices n = |V| %

* Number of edges m = |E| < n(n — 1) G a

» Note m is in 0(n?) but not necessarily Q(n?) Sedari

n(n—1)

» For undirected graphs, m <

« (Asymptotically, no different)
Head of the edge (u, v)

» Other common terminology: fail of ihe edge

- vertices = nodes edges = arcs a_,”

(or source & target) 4

A FEW MORE TERMS

* The indegree of a node u, denoted indeg(u),
Is the number of edges directed into u

« The outdegree, denoted outdeg(u), O[Jﬂfgfe'éfee%)rggg”
Is the number of edges directed out from u

» The neighbours of u are the nodes u points to
» Also called the nodes adjacent to u, denoted adj(u)

indeg(u) =1
outdeg(u) = 2
adj(u) = {1,5}

DATA STRUCTURES FOR GRAPHS

« TWO main representations
« Adjacency matrix
« Adjacency list

 Each has pros & cons

ADJACENCY MATRIX REPRESENTATION

e nXn mMatrix 4 = (a,,)

« rows & columns indexed by V

* a,, =1Iif (u,v) is an edge

* a,, = 0if (u,v) is a non-edge Matrix A
» Diagonal =0 (no self edges)

tail

|0 0 1 00 0
msnmmn
10

head

0 1.0 0
01 0™ 0 0 0
0.0 0 0% 1 0
0000 0% 1
0 0 0 0 1 0%

7

ADJACENCY MATRIX REPRESENTATION

» For undirected graphs
* a,, =1if (u,v) or (v,u) Is an edge
« Matrix is symmetric AT = 4

S

head

A BEaE

IMPLEMENTING AN ADJACENCY MATRIX

« Suppose we are loading a graph from input
« Assume nodes are labeled 0..n-1
« 2D array bool adj[n][n]
 What if nodes are not labeled 0..n-1¢
« Rename them in a preprocessing step
« What if you don’t have 2D arrays?
* Transform 2D array index info 1D index

« adj[u][v] =2 adj[u*n + V]
(can simplify with macros in C)

ADJACENCY LIST REPRESENTATION

 n linked lists, one for each node
« We write adj[u] to denote the list for node u
* adj[u] contains the labels of hodes it has edges to

tail

— 5

head
BT

4
3
|
2
6
/
5

10

ADJACENCY LIST REPRESENTATION

» For undirected graphs
* |If adj[u] contains v then adj[v] also contains u

tail

l+—> 3 — 4

2—> 3 — 4
|3 | — 2 — 5

S la+—nin—n2
< 3 = 4 —=—> 7

b+—> 5 — 7

74> 5 — 4

11

IMPLEMENTING ADJACENCY LISTS

« Suppose we are loading a graph from input
« Assume nodes are labeled 0..n-1
« Array of lists adj[n]
* (In C++, something like an array of vector<int> would work]

12

HNONVNNIBRS @] NN

Excellent when nodes
have 0(1) neighbours

Adjacency matrix | Adjacency list

Time to test whether

(u,v) is an edge O(outdeg(u))

Time to list neighbbours
of u

O (outdeg(u))

Space complexity O(n +m)

Can be better for
dense graphs Better if o(n?) edges

We call this a sparse graph
13

. -
L R O R R
R

LR -
LA R RN RN AR R RN R R R R EERE R R R R RN
L L L L L
LR L L L L L L L R L

Potete e e
AARIAS

5 AL S

N
/

ettty

A simple introduction to graph algorithms

14

BreadthFirstSearch (V] 1, adjl 1. s) Assuming adjacency list representation

pred|] = [null, null, ..., null] 4
dist]] = [infty, infty, ..., infty] W
colour]| = [white, white, ..., white] //// \\\

g = new queue %
colour[s] = gray starting node s

dist[s] =
g.enqueue (

1
2
3
A
5
6
7
8
9
10
11 while q is not empty Start processmg
12 = q.dequeue() node u's edges
13
14
15
16
17
18
19
20

Undiscovered nodes are white

Discovered nodes are gray

* Processing adjacent edges
for v in adj[u]

if colour[v] = white Discover
(enqueue) :
W neighbour v « Adjacent nodes have

; st[u] + been processed
V

Finished nodes are black

pred[v] =
colour|[v]
dist[v] =

§-EIEEDE Connected graph: each node

colour[u] = black
Finish processing u 1S even’rually black

21 return colour, pred, dist 15

BreadthFirstSearch(V[1..n], adj[l..n], s)
pred[1..n] = [null, null, ..., null]
dist[l..n] = [infty, infty, ..., infty]
colour[l..n] = [white, white, ..., white]
g = new queue

2 /
colour[s] = gray \/ / 0

dist[s] = 0 3 5
]

g.enqueue(s) //

1

2

3

4

5

6

7

8

9

10

11 while q is not empty o X X2
12 u = q.dequeue() 1

13 for v in adj[u] 0 : 5
14

15

16

17

18

19

20

if colour[v] = white
pred[v] = u
colour[v] = gray
dist[v] = dist[u] + 1
g.enqueue(v)
colour[u] = black g tail

q head

21 return colour, pred, dist 16

BreadthFirstSearch(V[1..n], adj[l..n], s)

pred[1..n] = [null, null, ..., null] COMPI—EXITY
dist[l..n] = [infty, infty, ..., infty]
colour[l..n] = [white, white, ..., white] e _
TONMEEE oy
colour[s] = gray .=
dist[s] = 0 ;

1
2
3
A
5
6
7
8
9
10
11 while g is not empty‘
12 u = q.dequeue()
13 for v in adj[ul J
14
15
16
17
18
19
20

* Naive loop analysis:

« O(n) iterations *
O(ladjlu]]) iterations

e ladj[u]] < n, so 0(n?)

if colour[v] = white

pred[v] = u

colour[v] = gray "-
dist[v] = dist[u] + [

g.enqueue(v) i

colour[u] = black -

21 return colour, pred, dist 17

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

BreadthFirstSearch (V]], adj|
pred|] = [null, null,
dist]|] = [1nfty, infty, ..
colour]|] = [white, white,
g = new queue
colour[s] = gray
dist[s] =
g.enqueue(s)
while g 1s not empty

= q.dequeue()
for v in adj[u]
if colour[v] = white
pred[v] =
colour[v] = gray
dist[v] = dist[u] +
g.enqueue(v)
colour[u] = black

return colour, pred, dist

1, s)

null]
., infty]

.., white]

Smarter loop analysis:

For each u,
iterate over all neighbours

\/
/\/

XX

We tfouch each edge twice
(doing 0(1) work each time)

4

Total contribution of the inner
loop to the runtime: O(m) 18

1l BreadthFirstSearch(V[1..n], adj[1l..n], s) _ ° quﬂ'er |oop qnq'ysis:
2 pred[1..n] = [null, null, ..., null]
3 dist[1..n] = [infty, infty, ..., infty] » |nitialization fime: 0(n)
4 colour[l..n] = [white, white, ..., white]
5 q = new queue » Total contribution of the
6 inner loop: O(m)
7 colour[s] = gray
8 dist[s] = 0 « (Over all iterations
18 q.enqueue(s) N of the outer loop)
11 while q is not empty } « Additional contribution of
Le u = q.dequeue() = the outer loop: 0(n)
13 for v in adj[ul
14 if colour[v] = white e Total runtime: O(m e n)
15 pred[v] = u L_
16 colour[v] = gray
17 dist[v] = dist[u] + 1
18 q.enqueue(v) .
19 colour[u] = black :}—-
20

21 return colour, pred, dist 19

DIFFERENCES WITH A

B

1 BreadthFirstSearch(V] 1,1AI][

]

ACENCY MATRICES

2 pred]|] = [null, null, ..., null]

> il) = lEmAsyy Sy, cocp AR » Analysis is mostly similar
4 colour|] = [white, white, ..., white]

5 a - new queue . But, it takes 0(n) time to
7 colour[s] = gray determine which nodes
8 o) = are adjacent to u!

9 q.enqueue(s)

10 : . ; :

o while q is not emoty This 0(n) cost Is pqd for
12 u = q.dequeue() eqach u, reSU|T|ng N d

13 for v = | . 2

14 if A[ul[v]]and colour[v] = white total runtime € O(n)

15 pred[v] = u

16 colour[v] = gray

17 dist[v] = dist[u] +

18 g.enqueue(v)

19 colour[u] = black

20

21 return colour, pred, dist

20

B Fs T R E E Disconnected? Forest...

 Connected graph: the array induces a tree
« The edges induced by are called
« Edges in the graph, but not in pred, are cross edges

BFS tree

e O

Graph

7\3—/8
/ \J

2

5

1

Cross edge
(hot part of tree)

21
Careful: we will also see DFS trees, and cross edges will be defined differently

BFS: PROOF OF OPTIMAL DISTANCES

DISTANCE IN GRAPH G AND BFS TREE T

Denote dg(v) as the (optimal) distance between s and v in G

Denote dr(v) as the distance between s and v in the BFS free T

Recdall: dist[v] I1s a value set by BFS for each node v

G
7 8
\ / dG('V) SR
3 - 5 v
dist[3] :\K //st[S] oo 5
S 2 4

23

PROOF IDEA

\ / dg(v) = 3
dist[3] \ / dist|v] = 3

dist[s] =0

Plan: prove this in two paris
Claim 1: dist|v] = dy(v)
Claim 2: d;(v) = dg;(v)

24

OooNNoOUL B WN =

SKETCH OF CLAIM 1: dlst[T

eadthFirstSearch(V[1..n], adj[1l..] s)

pred[1..n] = [null, null, ..., null]
dist[1l..n] = [infty, infty, ..., infty]
colour[1l..n] = [white, white, ..., white]

g = hew queue

colour[s] = gray
dist[s] =
g.enqueue(s)

while q 1s not empty
= (.dequeue()
for v in adj[u]
if colour[v] = white
pred[v] =
colour[v] = gray
dist[v] = dist[u] + 1
g.enqueue(v)
colour[u] = black

return colour, pred, dist

dr(v),Vv eV

SKETCH OF CLAIM 2: d(v) = d.(v)

e Part 1: Vv, d;(v) < dr(v) To prove =

we show < and >

* There is aunique pathv - -+ > sinT
« And T Is a subgraph of G
« SO that same path also exists In ¢ (tfechnically reversed)

o 7 :
‘\ So dg(v) is 3
\ / or better
2 ,9;) ; o b &
S - 2 4
QdT(V) =23

SKETCH OF CLAIM 2: d(v) = d(v)

e Part 2: Vv d > What are the ° Vo
a D, G(v) — dT(v) consequences of e e
e Partition T into levels skipping™ a level '”VTZ =
g B 1
V. = {v:dy(v) = i} by distance from s ‘ o

« Claim: there is no “forward” edgein G v, 0 e G °

that “skips™ a level from V; to V;,j = i + 2

. Suppose there is, for confradiction... v, 0
—— \ / But that edge in G would cause 7 to
That "skip™ edge - have s as its parent, so dist[7] would
in T looks like this be only 1 greater than its parent...

in G
/ \ / Contradicts(!) the assumption that

the edge points to a node with

4 greater distance by at least 2 24

SKETCH OF CLAIM 2: d(v) = d.(v)
e Part 2: Vv, d;(v) = dr(v)

« We've just argued that
there is no “forward” edge in G

Vi

that “skips” alevel In T
fromV;toV;,j =i+ 2

A
» Since no edge in G "skips” alevelin T, ’

we know at least one edge in G Vs 0
IS needed fo fraverse each level
between s € Vo and v € V()

 There are drq,) such levels, so dg(v) = dr(v)

28

BFS TREE PROPERTIES = @--------- Level 0

7—8

vy 5060

9

1

---------- Level 3

Fact: there are no “back” edges in
undirected graphs that “skip” a level going
up in the BFS iree.

29

20,

/7

‘ OO \
SRl ISV Ay sy
/% "-’,’.’%"..'

NRESD L SRy S0y
/7 '..','

RGY

APPLICATION:

oy

DING SHORTEST PATHS

30

User interfaces:
rubber-banding a
mouse cursor
around obstacles

|

31

32

HOW TO OUTPUT AN ACTUAL PATH

« Suppose you want to output a path from s to v with
minimum distance (not just the distance to v)

« Algorithm (what do you think?)
« Similar fo extracting an answer from a DP array!
« Work backwards through the predecessors
» Note: this will print the path in reverse! Solution?

33

Shortest path
to here?

‘.‘.

» .’ ..1

A A
'% ..'o
APPLICATION:

UNDIRECTED CONNECTED COMPONENTS

CONNECTED COMPONENTS

« Example: undirected graph with three components

@ w
-

Can you think of a way to use BFS

to count how many connected
components there are¢

36

CONNECTED COMPONENTS

UndirectedConnectedComponents(adj[1..n])
colour[1l..n] = [white, ..., white]
comp[l..n] = [0, ..., O]

compNum = 1

for start = 1..n

| if colour[start] 1s white

| BFS(adj, start, colour, comp, compNum)

| | compNum = compNum + 1

return comp 37

O douUups WNK-

. . e
R N
. MR EERERENE

ete e e e’
OO

PAVCLWN A

38

ANSWER TO BFS TREE PROPERTY EXERCISE...

Bfs free graph Bfs free graph

Dofted = back edge

39

