
CS 341: ALGORITHMS
Lecture 10: graph algorithms I

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

GRAPHS

2

GRAPHS 7

5

8

1 2

3 6

4

• A graph is a pair 𝐺 = (𝑉, 𝐸)

• 𝑉 contains vertices

• 𝐸 contains edges

• An edge 𝒖𝒗 connects

two distinct vertices 𝑢, 𝑣

• Also denoted (𝑢, 𝑣)

• Graphs can be undirected

• … or directed

• meaning 𝑢, 𝑣 ≠ (𝑣, 𝑢)

7

5

8

1 2

3 6

4

Directed

Undirected

3

PROPERTIES OF GRAPHS
4

1 2

3

• Number of vertices 𝑛 = |V|

• Number of edges 𝑚 = 𝐸 ≤ 𝑛(𝑛 − 1)

• Note 𝑚 is in 𝑂 𝑛2 but not necessarily Ω 𝑛2

• For undirected graphs, 𝑚 ≤
𝑛 𝑛−1

2

• (Asymptotically, no different)

• Other common terminology:

• vertices = nodes edges = arcs

12 edges

𝑛 𝑛 − 1 = 4 ⋅ 3

𝒗𝒖

Head of the edge (𝑢, 𝑣)

Tail of the edge

(or source & target) 4

A FEW MORE TERMS

• The indegree of a node 𝒖, denoted indeg(𝑢),
is the number of edges directed into 𝑢

• The outdegree, denoted outdeg(𝑢),
is the number of edges directed out from 𝑢

• The neighbours of 𝑢 are the nodes 𝑢 points to

• Also called the nodes adjacent to 𝒖, denoted adj(𝑢)

4

𝒖21

5

6

7

𝑖𝑛𝑑𝑒𝑔 𝑢 = 1
𝑜𝑢𝑡𝑑𝑒𝑔 𝑢 = 2
𝑎𝑑𝑗 𝑢 = {1,5}

or simply deg(𝑢) in an

undirected graph

5

DATA STRUCTURES FOR GRAPHS

• Two main representations

• Adjacency matrix

• Adjacency list

• Each has pros & cons

6

ADJACENCY MATRIX REPRESENTATION

• 𝑛 × 𝑛 matrix 𝐴 = (𝑎𝑢𝑣)

• rows & columns indexed by 𝑉

• 𝒂𝒖𝒗 = 𝟏 if (𝑢, 𝑣) is an edge

• 𝒂𝒖𝒗 = 𝟎 if 𝑢, 𝑣 is a non-edge

• Diagonal = 0 (no self edges)

0 0 0 1 0 0 0

0 0 1 0 0 0 0

1 0 0 0 1 0 0

0 1 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0

4

321

5

6

7

h
e

a
d

tail
Matrix 𝐴

1 2 3 4 5 6 7

1

2

3

4

5

6

7 7

ADJACENCY MATRIX REPRESENTATION

• For undirected graphs

• 𝒂𝒖𝒗 = 𝟏 if (𝑢, 𝑣) or (𝒗, 𝒖) is an edge

• Matrix is symmetric 𝐴𝑇 = 𝐴

0 0 1 1 0 0 0

0 0 1 1 0 0 0

1 1 0 0 1 0 0

1 1 0 0 0 0 0

0 0 1 0 0 1 1

0 0 0 0 1 0 1

0 0 0 0 1 1 0

4

321

5

6

7

h
e

a
d

tail
1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

IMPLEMENTING AN ADJACENCY MATRIX

• Suppose we are loading a graph from input

• Assume nodes are labeled 0..n-1

• 2D array bool adj[n][n]

• What if nodes are not labeled 0..n-1?

• Rename them in a preprocessing step

• What if you don’t have 2D arrays?

• Transform 2D array index into 1D index

• adj[u][v] → adj[u*n + v]

(can simplify with macros in C)
9

ADJACENCY LIST REPRESENTATION

• 𝑛 linked lists, one for each node

• We write 𝑎𝑑𝑗[𝑢] to denote the list for node 𝑢

• 𝑎𝑑𝑗[𝑢] contains the labels of nodes it has edges to

4

321

5

6

7

1

2

3

4

5

6

7

h
e

a
d

tail4

3

1 5

2

6

7

5

10

ADJACENCY LIST REPRESENTATION

• For undirected graphs

• If 𝑎𝑑𝑗[𝑢] contains 𝑣 then 𝑎𝑑𝑗[𝑣] also contains 𝑢

4

321

5

6

7

1

2

3

4

5

6

7

h
e

a
d

tail

3

3

1 2

1

3

5

5

2

5

4

4

6 7

7

6

11

IMPLEMENTING ADJACENCY LISTS

• Suppose we are loading a graph from input

• Assume nodes are labeled 0..n-1

• Array of lists adj[n]

• (In C++, something like an array of vector<int> would work)

12

PROS AND CONS

Adjacency matrix Adjacency list

Time to test whether

(𝑢, 𝑣) is an edge 𝑂(1) 𝑂(𝑜𝑢𝑡𝑑𝑒𝑔 𝑢)

Time to list neighbours

of 𝑢 𝑂(𝑛) 𝑂(𝑜𝑢𝑡𝑑𝑒𝑔 𝑢)

Space complexity 𝑂(𝑛2) 𝑂(𝑛 +𝑚)

Better if 𝑜(𝑛2) edges

We call this a sparse graph

Excellent when nodes

have 𝑂(1) neighbours

Can be better for

dense graphs

13

BREADTH FIRST SEARCH
A simple introduction to graph algorithms

14

• Undiscovered nodes are white

• Discovered nodes are gray

• Processing adjacent edges

• Finished nodes are black

• Adjacent nodes have

been processed

• Connected graph: each node

is eventually black

Start processing

node 𝑢’s edges

Discover (enqueue)

starting node s

Discover

(enqueue)

neighbour 𝑣

Finish processing 𝑢

Assuming adjacency list representation

15

u v

w

u v

w

u

7

5

8

1 2

3 6

4

Example execution

starting at node 1

1

q: 1

q headq tail

2

2

3

3

1 4

4

5

5

2

7

7

8

8

3

4

6

6

5

7 8

6

16

0 1

1

2

2

2 2

3

COMPLEXITY
(with adjacency lists)𝑂(𝑛)𝑂(𝑛)

𝑂(1)

𝑂(1)𝑂(1)

𝑂(1)

𝑂 adj 𝑢

iterations

𝑂(1)

𝑂(1)

𝑂 𝑛 iterations

• Naïve loop analysis:

• 𝑂(𝑛) iterations *

𝑂 𝑎𝑑𝑗 𝑢 iterations

• 𝑎𝑑𝑗 𝑢 ≤ 𝑛, so 𝑂(𝑛2)

17

𝑂(1)

𝑂(𝑛)

Smarter loop analysis:

• For each 𝑢,

iterate over all neighbours

• We touch each edge twice

(doing 𝑂(1) work each time)

• Total contribution of the inner

loop to the runtime: 𝑂(𝑚)

7

5

8

1 2

3 6

4
x

x

x

x

x

x

1 2

3

xx

x

xx

4
x

5
x

x

x
6

x

7

x

x
8

x

x

18

• Smarter loop analysis:

• Initialization time: 𝑶(𝒏)

• Total contribution of the

inner loop: 𝑶(𝒎)

• (Over all iterations

of the outer loop)

• Additional contribution of

the outer loop: 𝑶(𝒏)

• Total runtime: 𝑶(𝒎+ 𝒏)

Analytic expression for loop complexity:

𝑇𝐿𝑂𝑂𝑃 𝑛 ∈ 𝑂 ෍

𝑢=1

𝑛

1 + deg 𝑢

= 𝑂 𝑛 +෍

𝑢=1

𝑛

deg 𝑢 = 𝑶 𝒏 +𝒎
19

DIFFERENCES WITH ADJACENCY MATRICES

• Analysis is mostly similar

• But, it takes 𝑂(𝑛) time to

determine which nodes

are adjacent to 𝑢!

• This 𝑂 𝑛 cost is paid for

each 𝑢, resulting in a

total runtime ∈ 𝑶 𝒏𝟐

20

BFS TREE

1

2 3

7 84 5

6

Tree edge

Cross edge

(not part of tree)

7

5

8

1 2

3 6

41 2

3

1 4

5

7 8

4

66

• Connected graph: the 𝒑𝒓𝒆𝒅[] array induces a tree

• The edges induced by 𝒑𝒓𝒆𝒅[] are called tree edges

• Edges in the graph, but not in pred, are cross edges

Careful: we will also see DFS trees, and cross edges will be defined differently

Graph

BFS tree

21

Disconnected? Forest…

2

3 5

7 8

BFS: PROOF OF OPTIMAL DISTANCES

22

DISTANCE IN GRAPH 𝐺 AND BFS TREE 𝑇
• Denote 𝑑𝐺(𝑣) as the (optimal) distance between 𝑠 and 𝑣 in 𝐺

• Denote 𝑑𝑇(𝑣) as the distance between 𝑠 and 𝑣 in the BFS tree 𝑇

• Recall: 𝑑𝑖𝑠𝑡 𝑣 is a value set by BFS for each node 𝑣

23

7

5

8

1 2

3 6

41 2

3

𝒔 4

5

7 8

4

6𝒗

2

3 5

7 8
𝒔

2 3

7 84 5

𝒗

𝑮 𝑻

𝒅𝑮 𝒗 = 𝟑

𝒅𝑻 𝒗 = 𝟑𝑑𝑖𝑠𝑡[𝑠] = 0

𝑑𝑖𝑠𝑡[3] = 1 𝑑𝑖𝑠𝑡[5] = 2 𝑑𝑖𝑠𝑡[𝑣] = 3

PROOF IDEA

Want to show: at the end of BFS, 𝒅𝒊𝒔𝒕 𝒗 = 𝒅𝑮 𝒗 for all 𝒗

Plan: prove this in two parts
Claim 1: 𝒅𝒊𝒔𝒕 𝒗 = 𝒅𝑻 𝒗
Claim 2: 𝒅𝑻 𝒗 = 𝒅𝑮 𝒗

24

7

5

8

1 2

3 6

41 2

3

𝒔 4

5

7 8

4

6𝒗

2

3 5

7 8

𝒔

2 3

7 84 5

𝒗

𝒅𝑮 𝒗 = 𝟑

𝒅𝑻 𝒗 = 𝟑

𝑑𝑖𝑠𝑡[𝑠] = 0

𝑑𝑖𝑠𝑡[3] = 1 𝑑𝑖𝑠𝑡[5] = 2 𝑑𝑖𝑠𝑡[𝑣] = 3

SKETCH OF CLAIM 1: 𝑑𝑖𝑠𝑡 𝑣 = 𝑑𝑇 𝑣 , ∀𝑣 ∈ 𝑉

Key observation: whenever we set

𝑑𝑖𝑠𝑡 𝑣 ← 𝑑𝑖𝑠𝑡 𝑢 + 1,
𝑢 is the parent of 𝑣 in the BFS tree.

Based on this observation,

a simple inductive proof shows

𝒅𝒊𝒔𝒕 𝒗 = 𝒅𝑻 𝒗

25

(for example, by strong induction

on the nodes in the order their 𝑑𝑖𝑠𝑡
values are set---left as an exercise)

SKETCH OF CLAIM 2: 𝑑𝑇 𝑣 = 𝑑𝐺 𝑣
• Part 1: ∀𝒗, 𝒅𝑮 𝒗 ≤ 𝒅𝑻 𝒗

• There is a unique path 𝑣 → ⋯ → 𝑠 in 𝑇

• And 𝑇 is a subgraph of 𝑮

• So that same path also exists in 𝐺 (technically reversed)

26

𝒔

2 3

7 84 5

𝒗
𝒅𝑻 𝒗 = 𝟑

7

5

8

1 2

3 6

41 2

3

𝒔 4

5

7 8

4

6𝒗

2

3 5

7 8
So 𝒅𝑮 𝒗 is 3

or better

To prove =
we show ≤ and ≥

• Part 2: ∀𝒗, 𝒅𝑮 𝒗 ≥ 𝒅𝑻 𝒗

• Partition 𝑇 into levels

𝑉𝑖 = {𝑣: 𝑑𝑇 𝑣 = 𝑖} by distance from 𝑠

• Claim: there is no “forward” edge in 𝑮
that “skips” a level from 𝑉𝑖 to 𝑉𝑗 , 𝑗 ≥ 𝑖 + 2

• Suppose there is, for contradiction…

27

𝒔

2 3

7 84 5

𝒗

𝑉0

𝑉1

𝑉2

𝑉3

SKETCH OF CLAIM 2: 𝑑𝑇 𝑣 = 𝑑𝐺 𝑣

7

5

8

1 2

3 6

41 2

3

𝒔 4

5

7 8

4

6𝒗

2

3 5

7 8

What are the

consequences of

“skipping” a level in 𝑇?

That “skip” edge

in 𝑇 looks like this

in 𝐺

But that edge in 𝐺 would cause 7 to

have 𝑠 as its parent, so 𝑑𝑖𝑠𝑡[7] would

be only 1 greater than its parent…

Contradicts(!) the assumption that

the edge points to a node with

greater distance by at least 2

• Part 2: ∀𝒗, 𝒅𝑮 𝒗 ≥ 𝒅𝑻 𝒗

• We’ve just argued that

there is no “forward” edge in 𝑮
that “skips” a level in 𝑇
from 𝑉𝑖 to 𝑉𝑗 , 𝑗 ≥ 𝑖 + 2

• Since no edge in 𝐺 “skips” a level in 𝑇,

we know at least one edge in 𝑮
is needed to traverse each level
between 𝒔 ∈ 𝑽𝟎 and 𝒗 ∈ 𝑽𝒅𝑻 𝒗

• There are 𝑑𝑇 𝑣 such levels, so 𝑑𝐺 𝑣 ≥ 𝑑𝑇(𝑣)

28

𝒔

2 3

7 84 5

𝒗

𝑉0

𝑉1

𝑉2

𝑉3

SKETCH OF CLAIM 2: 𝑑𝑇 𝑣 = 𝑑𝐺 𝑣

BFS TREE PROPERTIES 1

2 3

7 84 5

6

Fact: there are no “back” edges in

undirected graphs that “skip” a level going
up in the BFS tree.

Level 0

Level 1

Level 2

Level 3

7

5

8

1 2

3 6

41 2

3

1 4

5

7 8

4

66

29

2

3 5

7 8

Answer in bonus slides…

Exercise: what about

directed graphs?

APPLICATION:

FINDING SHORTEST PATHS

30

User interfaces:

rubber-banding a

mouse cursor

around obstacles

31

Game AI:

path finding

in a grid-graph

How to represent

a grid graph?Starting to get into

the details

BFS from here

32

HOW TO OUTPUT AN ACTUAL PATH

• Suppose you want to output a path from 𝑠 to 𝑣 with

minimum distance (not just the distance to 𝑣)

• Algorithm (what do you think?)

• Similar to extracting an answer from a DP array!

• Work backwards through the predecessors

• Note: this will print the path in reverse! Solution?

33

0

BFS from here

1

2

3

3

4

4

5

5

Shortest path

to here?

5

4 3 2

10

Destination 𝑣

Predecessor 𝑝𝑟𝑒𝑑 𝑣

Predecessor

𝑝𝑟𝑒𝑑 𝑝𝑟𝑒𝑑 𝑣

Each time you visit a predecessor,

push it into a stack

At the end, pop all off the stack.

This gives 0, 1, 2, …, 5 = the path!

I.e., push 𝑣 = 5, then push 𝑝𝑟𝑒𝑑 𝑣 = 4,

then push 𝑝𝑟𝑒𝑑 𝑝𝑟𝑒𝑑 𝑣 = 3, then 2, …

34

APPLICATION:
UNDIRECTED CONNECTED COMPONENTS

35

CONNECTED COMPONENTS

• Example: undirected graph with three components

Can you think of a way to use BFS

to count how many connected

components there are?

36

CONNECTED COMPONENTS

5

1
2

6

3

4

7

10

9

8

37

BreadthFirstSearch(V, adj, 1)

BreadthFirstSearch(V, adj, 3)

BreadthFirstSearch(V, adj, 4)

5

1
2

6

3

4

7

10

9

8

Can be done in

𝑂(𝑛 +𝑚) time

Complexity?

Modified BFS that (1) reuses the

same colour array for consecutive

calls and (2) sets comp[u] =

compNum for each node u it visits

BONUS SLIDES

38

ANSWER TO BFS TREE PROPERTY EXERCISE…

39

graphBfs tree graphBfs tree

Dotted = back edge

