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GRAPHS 7

5

8

1 2

3 6

4

• A graph is a pair 𝐺 = (𝑉, 𝐸)

• 𝑉 contains vertices

• 𝐸 contains edges

• An edge 𝒖𝒗 connects

two distinct vertices 𝑢, 𝑣

• Also denoted (𝑢, 𝑣)

• Graphs can be undirected

• … or directed

• meaning 𝑢, 𝑣 ≠ (𝑣, 𝑢)
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PROPERTIES OF GRAPHS
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• Number of vertices 𝑛 = |V|

• Number of edges 𝑚 = 𝐸 ≤ 𝑛(𝑛 − 1)

• Note 𝑚 is in 𝑂 𝑛2 but not necessarily Ω 𝑛2

• For undirected graphs, 𝑚 ≤
𝑛 𝑛−1
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• (Asymptotically, no different)

• Other common terminology:

• vertices = nodes edges = arcs

12 edges

𝑛 𝑛 − 1 = 4 ⋅ 3

𝒗𝒖

Head of the edge (𝑢, 𝑣)

Tail of the edge

(or source & target) 4



A FEW MORE TERMS

• The indegree of a node 𝒖, denoted indeg(𝑢),
is the number of edges directed into 𝑢

• The outdegree, denoted outdeg(𝑢), 
is the number of edges directed out from 𝑢

• The neighbours of 𝑢 are the nodes 𝑢 points to

• Also called the nodes adjacent to 𝒖, denoted adj(𝑢)

4

𝒖21

5

6

7

𝑖𝑛𝑑𝑒𝑔 𝑢 = 1
𝑜𝑢𝑡𝑑𝑒𝑔 𝑢 = 2
𝑎𝑑𝑗 𝑢 = {1,5}

or simply deg(𝑢) in an 

undirected graph
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DATA STRUCTURES FOR GRAPHS

• Two main representations

• Adjacency matrix

• Adjacency list

• Each has pros & cons
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ADJACENCY MATRIX REPRESENTATION

• 𝑛 × 𝑛 matrix 𝐴 = (𝑎𝑢𝑣)

• rows & columns indexed by 𝑉

• 𝒂𝒖𝒗 = 𝟏 if (𝑢, 𝑣) is an edge

• 𝒂𝒖𝒗 = 𝟎 if 𝑢, 𝑣 is a non-edge

• Diagonal = 0 (no self edges)

0 0 0 1 0 0 0

0 0 1 0 0 0 0

1 0 0 0 1 0 0

0 1 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0
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ADJACENCY MATRIX REPRESENTATION

• For undirected graphs

• 𝒂𝒖𝒗 = 𝟏 if (𝑢, 𝑣) or (𝒗, 𝒖) is an edge

• Matrix is symmetric 𝐴𝑇 = 𝐴

0 0 1 1 0 0 0

0 0 1 1 0 0 0

1 1 0 0 1 0 0

1 1 0 0 0 0 0

0 0 1 0 0 1 1

0 0 0 0 1 0 1

0 0 0 0 1 1 0
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IMPLEMENTING AN ADJACENCY MATRIX

• Suppose we are loading a graph from input

• Assume nodes are labeled 0..n-1

• 2D array bool adj[n][n]

• What if nodes are not labeled 0..n-1?

• Rename them in a preprocessing step

• What if you don’t have 2D arrays?

• Transform 2D array index into 1D index

• adj[u][v] → adj[u*n + v]

(can simplify with macros in C)
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ADJACENCY LIST REPRESENTATION

• 𝑛 linked lists, one for each node

• We write 𝑎𝑑𝑗[𝑢] to denote the list for node 𝑢

• 𝑎𝑑𝑗[𝑢] contains the labels of nodes it has edges to
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ADJACENCY LIST REPRESENTATION

• For undirected graphs

• If 𝑎𝑑𝑗[𝑢] contains 𝑣 then 𝑎𝑑𝑗[𝑣] also contains 𝑢
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IMPLEMENTING ADJACENCY LISTS

• Suppose we are loading a graph from input

• Assume nodes are labeled 0..n-1

• Array of lists adj[n]

• (In C++, something like an array of vector<int> would work)
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PROS AND CONS

Adjacency matrix Adjacency list

Time to test whether 

(𝑢, 𝑣) is an edge 𝑂(1) 𝑂(𝑜𝑢𝑡𝑑𝑒𝑔 𝑢 )

Time to list neighbours 

of 𝑢 𝑂(𝑛) 𝑂(𝑜𝑢𝑡𝑑𝑒𝑔 𝑢 )

Space complexity 𝑂(𝑛2) 𝑂(𝑛 +𝑚)

Better if 𝑜(𝑛2) edges

We call this a sparse graph

Excellent when nodes 

have 𝑂(1) neighbours

Can be better for 

dense graphs
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BREADTH FIRST SEARCH
A simple introduction to graph algorithms
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• Undiscovered nodes are white

• Discovered nodes are gray

• Processing adjacent edges

• Finished nodes are black

• Adjacent nodes have 

been processed

• Connected graph: each node 

is eventually black

Start processing 

node 𝑢’s edges

Discover (enqueue) 

starting node s

Discover 

(enqueue) 

neighbour 𝑣

Finish processing 𝑢

Assuming adjacency list representation
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Example execution 

starting at node 1
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q: 1

q headq tail
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COMPLEXITY
(with adjacency lists)𝑂(𝑛)𝑂(𝑛)

𝑂(1)

𝑂(1)𝑂(1)

𝑂(1)

𝑂 adj 𝑢  

iterations

𝑂(1)

𝑂(1)

𝑂 𝑛  iterations

• Naïve loop analysis:

• 𝑂(𝑛) iterations *

𝑂 𝑎𝑑𝑗 𝑢 iterations

• 𝑎𝑑𝑗 𝑢 ≤ 𝑛, so 𝑂(𝑛2)
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𝑂(1)

𝑂(𝑛)



Smarter loop analysis:

• For each 𝑢,

iterate over all neighbours

• We touch each edge twice

(doing 𝑂(1) work each time)

• Total contribution of the inner 

loop to the runtime: 𝑂(𝑚)
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• Smarter loop analysis:

• Initialization time: 𝑶(𝒏)

• Total contribution of the 

inner loop: 𝑶(𝒎)

• (Over all iterations

of the outer loop)

• Additional contribution of 

the outer loop: 𝑶(𝒏)

• Total runtime: 𝑶(𝒎+ 𝒏)

Analytic expression for loop complexity:

𝑇𝐿𝑂𝑂𝑃 𝑛 ∈ 𝑂 ෍

𝑢=1

𝑛

1 + deg 𝑢

= 𝑂 𝑛 +෍

𝑢=1

𝑛

deg 𝑢 = 𝑶 𝒏 +𝒎
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DIFFERENCES WITH ADJACENCY MATRICES

• Analysis is mostly similar

• But, it takes 𝑂(𝑛) time to 

determine which nodes

are adjacent to 𝑢!

• This 𝑂 𝑛 cost is paid for 

each 𝑢, resulting in a

total runtime ∈ 𝑶 𝒏𝟐
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BFS TREE
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• Connected graph: the 𝒑𝒓𝒆𝒅[] array induces a tree

• The edges induced by 𝒑𝒓𝒆𝒅[] are called tree edges

• Edges in the graph, but not in pred, are cross edges

Careful: we will also see DFS trees, and cross edges will be defined differently

Graph

BFS tree

21

Disconnected? Forest…
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BFS: PROOF OF OPTIMAL DISTANCES

22



DISTANCE IN GRAPH 𝐺 AND BFS TREE 𝑇
• Denote 𝑑𝐺(𝑣) as the (optimal) distance between 𝑠 and 𝑣 in 𝐺

• Denote 𝑑𝑇(𝑣) as the distance between 𝑠 and 𝑣 in the BFS tree 𝑇

• Recall: 𝑑𝑖𝑠𝑡 𝑣 is a value set by BFS for each node 𝑣
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𝒗

𝑮 𝑻

𝒅𝑮 𝒗 = 𝟑

𝒅𝑻 𝒗 = 𝟑𝑑𝑖𝑠𝑡[𝑠] = 0

𝑑𝑖𝑠𝑡[3] = 1 𝑑𝑖𝑠𝑡[5] = 2 𝑑𝑖𝑠𝑡[𝑣] = 3



PROOF IDEA

Want to show: at the end of BFS, 𝒅𝒊𝒔𝒕 𝒗 = 𝒅𝑮 𝒗  for all 𝒗

Plan: prove this in two parts
Claim 1: 𝒅𝒊𝒔𝒕 𝒗 = 𝒅𝑻 𝒗
Claim 2: 𝒅𝑻 𝒗 = 𝒅𝑮 𝒗
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𝒅𝑮 𝒗 = 𝟑

𝒅𝑻 𝒗 = 𝟑

𝑑𝑖𝑠𝑡[𝑠] = 0

𝑑𝑖𝑠𝑡[3] = 1 𝑑𝑖𝑠𝑡[5] = 2 𝑑𝑖𝑠𝑡[𝑣] = 3



SKETCH OF CLAIM 1: 𝑑𝑖𝑠𝑡 𝑣 = 𝑑𝑇 𝑣 , ∀𝑣 ∈ 𝑉

Key observation: whenever we set 

𝑑𝑖𝑠𝑡 𝑣 ← 𝑑𝑖𝑠𝑡 𝑢 + 1,
𝑢 is the parent of 𝑣 in the BFS tree.

Based on this observation,

a simple inductive proof shows

𝒅𝒊𝒔𝒕 𝒗 = 𝒅𝑻 𝒗

25

(for example, by strong induction 

on the nodes in the order their 𝑑𝑖𝑠𝑡 
values are set---left as an exercise)



SKETCH OF CLAIM 2: 𝑑𝑇 𝑣 = 𝑑𝐺 𝑣
• Part 1: ∀𝒗, 𝒅𝑮 𝒗 ≤ 𝒅𝑻 𝒗

• There is a unique path 𝑣 → ⋯ → 𝑠 in 𝑇

• And 𝑇 is a subgraph of 𝑮

• So that same path also exists in 𝐺 (technically reversed)
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So 𝒅𝑮 𝒗  is 3 

or better

To prove =
we show ≤ and ≥



• Part 2: ∀𝒗, 𝒅𝑮 𝒗 ≥ 𝒅𝑻 𝒗

• Partition 𝑇 into levels

𝑉𝑖 = {𝑣: 𝑑𝑇 𝑣 = 𝑖} by distance from 𝑠

• Claim: there is no “forward” edge in 𝑮
that “skips” a level from 𝑉𝑖 to 𝑉𝑗 , 𝑗 ≥ 𝑖 + 2

• Suppose there is, for contradiction…
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SKETCH OF CLAIM 2: 𝑑𝑇 𝑣 = 𝑑𝐺 𝑣
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What are the 

consequences of 

“skipping” a level in 𝑇?

That “skip” edge 

in 𝑇 looks like this 

in 𝐺

But that edge in 𝐺 would cause 7 to 

have 𝑠 as its parent, so 𝑑𝑖𝑠𝑡[7] would 

be only 1 greater than its parent…

Contradicts(!) the assumption that 

the edge points to a node with 

greater distance by at least 2



• Part 2: ∀𝒗, 𝒅𝑮 𝒗 ≥ 𝒅𝑻 𝒗

• We’ve just argued that

there is no “forward” edge in 𝑮
that “skips” a level in 𝑇
from 𝑉𝑖 to 𝑉𝑗 , 𝑗 ≥ 𝑖 + 2

• Since no edge in 𝐺 “skips” a level in 𝑇,

we know at least one edge in 𝑮
is needed to traverse each level
between 𝒔 ∈ 𝑽𝟎 and 𝒗 ∈ 𝑽𝒅𝑻 𝒗

• There are 𝑑𝑇 𝑣 such levels, so 𝑑𝐺 𝑣 ≥ 𝑑𝑇(𝑣)
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BFS TREE PROPERTIES 1

2 3

7 84 5
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Fact: there are no “back” edges in 

undirected graphs that “skip” a level going 
up in the BFS tree.

Level 0

Level 1

Level 2

Level 3
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3 5
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Answer in bonus slides…

Exercise: what about 

directed graphs? 



APPLICATION:

FINDING SHORTEST PATHS
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User interfaces:

rubber-banding a 

mouse cursor 

around obstacles
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Game AI:

path finding

in a grid-graph

How to represent 

a grid graph?Starting to get into 

the details

BFS from here
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HOW TO OUTPUT AN ACTUAL PATH

• Suppose you want to output a path from 𝑠 to 𝑣 with 

minimum distance (not just the distance to 𝑣)

• Algorithm (what do you think?)

• Similar to extracting an answer from a DP array!

• Work backwards through the predecessors

• Note: this will print the path in reverse! Solution?
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0

BFS from here

1

2

3

3

4

4

5

5

Shortest path

to here?

5

4 3 2

10

Destination 𝑣

Predecessor 𝑝𝑟𝑒𝑑 𝑣

Predecessor 

𝑝𝑟𝑒𝑑 𝑝𝑟𝑒𝑑 𝑣

Each time you visit a predecessor, 

push it into a stack

At the end, pop all off the stack.

This gives 0, 1, 2, …, 5 = the path!

I.e., push 𝑣 = 5, then push 𝑝𝑟𝑒𝑑 𝑣 = 4, 

then push 𝑝𝑟𝑒𝑑 𝑝𝑟𝑒𝑑 𝑣 = 3, then 2, …
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APPLICATION:
UNDIRECTED CONNECTED COMPONENTS
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CONNECTED COMPONENTS

• Example: undirected graph with three components

Can you think of a way to use BFS 

to count how many connected 

components there are?
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CONNECTED COMPONENTS
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BreadthFirstSearch(V, adj, 1)

BreadthFirstSearch(V, adj, 3)

BreadthFirstSearch(V, adj, 4)
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Can be done in 

𝑂(𝑛 +𝑚) time

Complexity?

Modified BFS that (1) reuses the 

same colour array for consecutive 

calls and (2) sets comp[u] = 

compNum for each node u it visits



BONUS SLIDES
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ANSWER TO BFS TREE PROPERTY EXERCISE…
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graphBfs tree graphBfs tree

Dotted = back edge


