CS 341: ALGORITHMS

Lecture 14: graph algorithms V - single source shortest path

Readings: see website

Trevor Brown

hittps://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

DIJKSTRA'S ALGORITHM

Single-source shortest path
in a graph with non-negative edge weights

PROBLEM: SINGLE SOURCE SHORTEST PATHS (SSSP)

. Let’s study directed G.
* Input: graph ¢ = (V, E) and o Can also be defined for undirected G...

non-negative weight function w(e) defined for every edge e

“Shortest” means
« Problem: for every node v # s, output a path s »» v minimum weight

with the smallest total weight (among all paths s w v)

* |.e., each path P should minimize w(P) = }..cp w(e)
Suppose Shor’res’r
17

m ”?: o

And so on... one path for each node.

18 4

14

\é

I

Shortest
Shortest
2SO & path to ¢

3

wees swemvamt - APPLICATION: DRIVING DISTANCE

< home depot

3= | Relevance ¥ | Openn

The Home Depot
Home improvemen t store
600 King St N} 5.1 km
Open - Closes 9 p.m.

In-store shopping - Curbside pickup - De...

The Home Depot
Home improvement store
1450 Ottawa St S 15.8 km
Open - Closes 9 p.m.

g

o e 1O MANY POSSIBLE DESTINATIONS

(=

» Single source: from where you are
« Shortest paths: to all destinations

(@

« Display a subset of destinations

In-store shopping - Curbside pickup - De... PY |nc|ude The OpTimOl diSTOnceS

The Home Depot
Home improvemen t store

DIC computed using SSSP algorithm

100 Gateway Park Dr|- 15 km

Open - Closes 9 p.m.

In-store shopping - Curbside pickup - De... - O-l-her heuriSTiCS. oo TrO ffica Lig hTS?

The Home Depot
Home improvement store
35 Pinebush Rd} 19 km
Open - Closes 9 p.m.

w (e » Weights can combine many factors

3 vView map

In-store shonnina - Curbside nickun - De

< @)

O

{ ' . WA
~»\.\/\,k»Kz~)«)\/\J\)«
P O OO OS¢

3
e %e’e % " A\,“;\,

., "‘Z,r(" B0

[video clip]

DIJKSTRA'S ALGORITHM
ILLUSTRATIVE EXAMPLE

g 4 4 di B g, dist[k] is
Start node Showing d .o © o “dic g di - optimal
s is here dist-values . Of Of o ©

Donel

18

/
G,O 14 10 9'41

19 6
This dist is @ % 57 @
AA @ -

Can we use this optimal dist to
improve the dist of neighbours

S Y

We call this relaxing — Key insight: after relaxing all, the smallest dist (that we
the neighbours \| didn’t already know was optimal) is now optimal

OooNOUE WNE

1jkstra(adj[l..n], s)

pred[1l..n] = [null, null, ..., null]
dist[l..n] = [1infty, 1infty, ..., infty]

dist[s] = 0O
for u=1..n
| pq.enqueue(u, dist[u])

4~ Pa-cequenetlin Each dequeved node u has opfimal dist
for v 1n adj[u]

if dist[u] + w(u,v) < dist[v]
dist[v] = dist[u] + w(u,v)
pred[v] = u
pq.changePriority(v, dist[v])

return pred, dist

CORRECTNESS: INTUITION

« Dijkstra’s algorithm iteratively construct a set OPT of nodes
for which we know the shortest path from s (initially OPT = {s})

« Affer each relaxation step, we grow OPT by adding
the node in V\OPT with the smallest dist

Nodes in OPT are
coloured like this

PROOF

 Theorem: At the end of the algorithm, for all u,
dist[u] Is exactly the total weight of the shortest s « u path

 We prove this in two parts

e dist
e dist

U

U

< the fotal weight of the shortest s w» u path (case <)
> the total weight of the shortest s » u path (case =)

CASE < [ERICKSON THM .8.5]

* Let P be any arbitrary s w» u path vy - v; - -+ - v,
where vy, = s and v, = u

» For any index j let L; denofe w(vo =V o D vj)

- We prove by induction: dist|v;| < L; for all j

w(orange edges) = L;

10

* Prove by induction: Vj : diSt[vj] =L (orange edges) = L
w €dges) = L;j

« Base case: dist|vy] = dist|s] =0 = L,

- Ind. step: suppose Vs : dist|v;_4]| < L;_4

* When dequeueMin() returns v;_y:
we check if dist :vj_l] + W(vj_l,vj) < dist[v;]

- If so, we set dist|v;| = dist|v;_,]| + w(v;_1,v;)
 |[f not, diSt[Uj] < diSt[Uj_l] L W(vj—l'vj)

- In both cases, dist|v;| < dist|v;_;| + w(v;_1,v})

« By LH. dist[v;_;] < L;_; so dist|v;| < L;_y + w(v;_,,v;) This proves distfu] < L,
i the weight of an
» And L;_; + w(vj_1,v;) = L; by definition arbitrary s « u path.

.+ S0 dist[vj] <7 So dist[u] < the weight of EVERY s w u path.

11

CASE >

e Llet P' be the path s - -+ - pred[pred[u]] — pred|u] - u
* |.e., the reverse of following pred pointers from u back 1o s

 We show dist[u] is as long as this path
(and hence as long as the shortest path)

Denote the nodes in P’ by vy, vy, ..., vp Where v =s and v, = u

Let L; = W(vo i B S vj)

Prove by induction: v, : dist|v;| = L;

Base case: dist|v,| = dist[s] = 0 = L,

12

CASE &

P =vyg—>:->vp=5->: > pred[pred] — pred|u] -
L; = W(vo et e e vj)
Inductive step: suppose Vs : dist|vi_;| = L;_;

When we set pred|v;| = v;_;. we set dist|v;| = dist|v;_1]| + w(v;_1, ;)

if dist[u] + w(u,v) < dist[v]H
 dist[v] = dist[u] + w(u,V)
| pred[v] = u

e —
. e
So diSt['U]] = L]

Thot means 's equal o he lengih of e shorfest path!

OCoo~douUups WN =

Dijkstra(adj

[1, s)
] = [null, null, ..., null] RUNT'ME

pred| — 0(n)
dist]] = [1infty, infty, 28685
pg = new priority queue e Fach node enqueued
| — and degueueMin'd once
dist[s] = 0(lo
gn)
for u = = O(nlogn) . O(Tl lOng)
pg.enqueue(u, distlu]) :
— * For each dequeueMin,
while pg is not empty do 0(logn) per neighbour
u = pqg.dequeueMin() 0(logn)
for v in adj[u] * O(logn) for each edge
if dist[u] + w(u,v) < dist[v]
dist[v] = dist[u] + w(u,v) * O(mlogn)
O(logn) —= _ : .
pred[v] = u w/adjacency lists
| L pqg.changePriority(v, dist[v])
- Total time O((n + m) logn)
return pred, dist

Space complexitye i

OUTPUTTING ACTUAL SHORTEST PATH(S)2

 To compute the actual shorfest path s w» ¢t
» Inspect pred|t]
o |f it is NULL, there is no such path

« Otherwise, follow pred pointers back 1o s,
and retfurn the reverse of that path

15

OooO~NOUEEWNKF

Dijkstra(adjl[1, s)

pred|] = [null, null, ..., null]
dist]|] = [1infty, infty, ..., infty]
OPT = [false, false, ..., false]
dist[s] =

OPT[s] = true

numOpt =

while numOpt < n

choose u such that OPT[u] == false
z and dist[u] 1s minimized
OPT[u] = true

numOpt = numOpt +

for v = adj[u]

1f dist[u] + w(u,v) < dist[v]
dist[v] = dist[u] + w(u,v)
pred[v] = u

return pred, dist

AN ALTERNATIVE
IMPLEMENTATION

* Instead of using
a priority queuve

* FiInd tThe minimum dist|]
node 1o add to OPT
via linear search

 Runtime?
« 0(n?)

 Better or worse than
0((n+m)logn)?

16

WEBSITE DEMONSTRATING DIJKSTRA'S ALG

« https://www.cs.usfca.edu/~galles/visualization/Dijkstra.ntml

17

https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html

BELLMAN-FORD

Single-source shortest path
in a graph with possibly negative edge weights
but no negative cycles

18

Shortest Paths and Negative Weight Cycles

Subsequent algorithms we will be studying will solve shortest path
problems as long as there are no cycles having negative weight.

If there is a negative weight cycle, then there is no shortest path (why?).

There is still a shortest simple path, but there are apparently no known
efficient algorithms to find the shortest simple paths in in graphs
congtaining negative weight cycles.

If there are no negative weight cycles, we can assume WLOG that shortest
paths are simple paths (any path can be replaced by a simple path having
the same weight).

Negative weight edges in an undirected graph are not allowed, as they
would give rise to a negative weight cycle (consisting of two edges) in the
associated directed graph.

19

BELLMAN-FORD

The Bellman-Ford algorithm solves the single source shortest path problem
in any directed graph without negative weight cycles.

LU LU

The algorithm is very simple to describe:

Repeat n — 1 times: relax every edge in the graph (where relax is the
updating step in Dijkstra’s algorithm).

BellmanFord(n, E[1..m], s)

pred[1l..n] = new array filled with null
D[1..n] = new array filled with infinity

IO
for i1=1..n

for (u,v,w) 1in E

__ if D[ul + w < D[v]

| D[v] = D[u] + w
| | pred[v] = u

return (D, pred)

20

B EST CAS E EX EC UTI O N It technically suffices to do one

iteration of the outer loop

-3 1 1 1 Edges happen 1o be processed
left to right by the inner loop
00 00 (0's) 00

0

1 BellmanFord(n, EJ 1, s)
-3 1 1 1 2 pred|] = new array filled with null
3 DI] = new array filled with infinity
4 D[s] =
0 -3 -2 -1 0 5 for i =
6 for (u,v,w) in E
7 ~ if D[u]l + w < D[v]
8 D[v] = D[u] + w
9 pred[v] = u
10 return (D, pred)

21

WORST CASE EXECUTION | Glictioos
_3 9 1 o 1 o e e Edges happen to bQ processed

0 e e e e right to left by the inner loop
-3 1 1 1 1 BellmanFord(n, EJ 1, s)
2 pred|] = new array filled with null
0 3 DI] = new array filled with infinity
_3 4 D[s] =
6 for (u,v,w) in E
0 -3 -2 00 7 if D[u] + w < D[V]
-3 1 8 D[v] = D[u] +w
9 pred[v] = u
0 -2 _1 00 10 return (D, pred)

_3 9 1 e Since the longest possible path without a cycle can be
n — 1 edges, the edges must be scanned n — 1 times to

0 -3 -2 -1 ensure the shorftest path has been found for all nodes.

Dijkstra’s is similar, but consistently achieves good ordering using its priority queue 29

WHY BELLMAN-FORD WORKS

* Not going o prove this (by induction), but the crucial lemma is:
o After i iterations of the outer for-loop,

* if D|u] # oo, It Is equal fo the weight of some path s w» u; and
e if thereis a path P = (s w u) with at most i edges, then D[u] < w(P)

» SO, affer n — 1 iterations, if 3 path P with at most n — 1 edges,
then D|u] < w(P). (Note: any more edges would create a cycle.)

» SO, If u is reachable from s, then D[u] is the length of
the shortest simple path (no cycles) from s fo u

Of course every simple path So what if we do another iteration, There is @
has at most n — 1 edges and some D[u] improves? negative cyclel

23

OCoo~NOUTE WN -

BellmanFordCheck(n, E[1..m], s)
pred[1..n] = new array filled with null
D[1..n] = new array filled with infinity
D[s] = 0O
for 1 = 1..n
changed = false
for (u,v,w) 1n E
if D[u] + w < D[v]
D[v] = D[u] + w
pred[v] = u

changed = true
1f not changed
exit Lloop
1f 1 == n // assert: changed == true
| return NEGATIVE CYCLE

retufn (D, pred)

A MORE DETAILED
IMPLEMENTATION

« With early stopping

* and checking for
negative cycles

24

BONUS SLIDE

« Why can’t you just modify a graph with negative weights
by: finding the minimum edge weight Wmin, and adding
that to each edge, so you no longer have negative edges
and can run Dijkstra’s algorithm?@

« Exercise: can you find a graph for which this will cause
Dijkstra’s algorithm to return the wrong answer?

 Solution:
« Consider a graph with 5 nodes: s, a, b, ¢, t

 And edges s->a with weight -10, b->1 with weight 10
s->b weight -1, b->c weight -1, c->t weight -1

« What happens if you modify this graph as proposed,
then run Dijkstra’s to find the shortest path from s to t2

