CS 341: ALGORITHMS

Lecture 17: max flow
Readings: CLRS 26.2

Trevor Brown

hittps://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

T

L
p #ukr'«x)'if__ .
\ SO S

R Bt
<5

P S S
VAN AN IR N

= b :
8.0 0. 0.0 LI . L) . . . O ..
e e e e e e e e e e’ R IR ICH IR ERIDOCIOOOTOL ")4.7‘5".

. 1 S "~ PP /
AW SR SAIN Py " g N > 1 o e N NSNS L,
. - ; o0 0 6 0 00600ttt hedtsededdedsdd

RECALL: MAX-FLOW MIN-CUT THEOREM

 Theorem 3: every max s-t flow has value
equal fo the capacity of a min s-t cut

 We give an algorithmic proof of this theorem

* (showing that one algorithm solves both
max-flow and min-cut at the same time)

FORD-FULKERSON METHOD

Algorithm development
(mixed together with proof of max-flow min-cut theorem)

FORD-FULKERSON METHOD e Ford

« Can undo previous decisions fo improve the flow

« Can effectively “push back” some flow
using an augmenting path through a residual graph

11 a 1/1 a 1/1
1/ ®—0—0 ./, ® & o

G\ 0/1 (¢ ‘)
1/1 1/1

Pushes back the “augmenting path”

improved flow flow on this edge

(negating its flow) So, what's the residual graph,

how do we find an augmenting path,
and how do we improve the flow?

5

RESIDUAL GRAPH
- Aresidual graph R is defined for a given flow f and graph G

* R has the same vertices as G

« Foreach edgee=uvin G,
- If f(e) < c(e), then R, contains a forward edge (u, v)
with the remaining capacity c(e) — f(e)

» If f(e) > 0, then Rr contains a backwards edge (v, u)
with capacity f(e) representing flow that could be “pushed back”

0/1 0/1 0/1
1/1 A

1/1

0/1 1/1
0/1 0/1 0/1

residual graph for this flow | Backwards edge:

Forward edge.:
can undo flow

remaining capacity

ANOTHER EXAMPLE RESIDUAL GRAPH

« Recall: foreach edge e =uvin G,
- If f(e) < c(e), then R, contains a forward edge (u, v)
with the remaining capacity c(e) — f(e)

- If f(e) > 0, then Ry contains a backwards edge (v, u)
with capacity f(e) representing flow that could be “pushed back”

0/1 0/1 0/1
2/2 0/1
2/3

0/1 2/2
0/1 0/1 0/1

residual graph for this flow

L L L L L L L L - - - - - " - - - L L L L
. .o .o "o "o LR . B < < < B < o .o .o .
L -

LR L
LA LR J

FORD-FULKERSON METHOD

» Find a shortest path P from s to t in the residual graph

o |f it improves the flow, we call it an
 And use it o update the flow

0/1 mm 0/1 am 0/1]] 1
1/] 0/1 . ®—0—0.

VA 1
0/1 VA 1 ‘/1\@
o @575 B ama e o

residual graph for this flow

For.w.ard edge:. Backwards edge:
remaining capacity undo some flow

9

FORD-FULKERSON METHOD

» Find a shortest path P from s to t in the residual graph

o |f it improves the flow, we call it an

« And use if fo update the flow For each forward edge in P,
increase existing flow
0/ 0/ 0/1 1 W
|]
1/1 0/1 1 ‘ ' ' 1

1/1 1
0/1 1/1 1 ‘/1\6
Vi ildVi @0 —®;

residual graph for this flow

For.w.ard edge:. Backwards edge:
remaining capacity undo some flow

10

FORD-FULKERSON METHOD

» Find a shortest path P from s to t in the residual graph

o |f it improves the flow, we call It an augmenting path

« And use it fo update the flow For each backwards edge in P,

decrease existing flow

1/1 1/1 1/1
1/1 1/1

1/1

1/1 1/1
1/1 1/1 1/1

updated flow residual graph for this flow

For.w.ard edge:. Backwards edge:
remaining capacity undo some flow

11

FORD-FULKERSON METHOD

* Find a shortest path P from s to t in the residual graph

o |f it improves the flow, we call it an
 And use it o update the flow

1/1 1/1 1/1

1 1 1
1/] : ®—0—0 .

0/1 1 ‘/ﬂ
11 1/1 1]
Vi dTTIl ¢ A SWa fma &

updated flow residual graph for this flow

Original greedy path Forward edge: Backwards edge:
no longer exists remaining capacity undo some flow

12

FORD-FULKERSON METHOD

» Find a shortest path P from s to t in the residual graph

o |f it improves the flow, we call it an
 And use it o update the flow

1/1 1/1 1/1

1/1 1/1 1/1
updated flow new residual graph for this flow

No path from s to tin
residual graph. Donel

13

IMPROVING A FLOW f
GIVEN AN AUGMENTING PATH P

no cycles!

- An augmenting path w.r.t a flow f is a simple s-t path in R

* Let P be an augmenting path w.r.t f

 Let bottleneck(f, P) be the minimum capacity of an edge in P

« We show this subroutine
augment(f, P) always
Improves the value of flow f

1 augment(f, P)

O~NOUTEE WN

let b = bottleneck(f, P)
for each edge e = (u,v) 1n P

if e 1s a forward edge

f(e) = f(e) + b
else 1f e 1s a backwards edge
let e' = (v,u)

f(e') = f(e') - b

14

LEMMA 4: AUGMENT() IMPROVES FLOW f

» Let f be a flow in G with f™(s) = 0,
and P be an augmenting path w.r.t f

» Let f' be the resulting flow after running augment(f, P)
* Then f'is a flow with value(f’) = value(f) + bottleneck(f, P)

« That is, augment(f, P) increases the flow by bottleneck(f, P)

15

PROOF

» Claim: augment(f, P) increases the flow by bottleneck(f, P)
 First check f' is a flow
« Prove capacity and conservation constraints, and f’i"(s) =t

« Are capacity constraints satisfied?
« We add/subtract bottleneck(f, P) fo/from each edge

« And bottleneck(f, P) is the minimum of the smallest remaining
capacity, and the current flow

« SO capacity constraints are satisfied

16

PROOF

» Claim: augment(f, P) increases the flow by bottleneck(f, P)
 How about conservation of flow?

« Consider how the flow into and out of each vertex u & {s, t}
changes as a result of running augment(f, P)

» We show the change in f™(u)
is the same as the change in %% (u)

* There are 4 cases, depending on whether the edges
entering/leaving u are forward or backward edges

17

Case 1: forward / forward

fin(w) =5
fout) = 5

forward forward

7 3

3/10 5/8
flow f residual graph Ry augmenting path 7 in R

Let bottleneck(f,P) = b :
Both f™(u) and f°%(u) are

2/5 f"w) =5+b increased by bottleneck(f, P)
W) =54+b

3+b/10 5+b/8 Case 2: backwards / backwards is similar.
Both f™(u) and f°“t(u) are decreased by b

new flow f'
(after augmenting)

18

Case 3: forward / backwards

fin(w) =5
fout) = 5

forward backwards

5 3

2/7 3/5

flow f residual graph Ry augmenting path 7 in R

Let bottleneck(f,P) = b
Added and subtracted

" w) =5 b terms cancel out
5/6 f,out(u) _c

Case 4: backwards / forwards is similar.
2+b// 3-b/5

new flow f'
(after augmenting)

19

SHOWING £'™(s) = 0

0/1 0/1 0/1
2/2 0/1

e Last step in showing £’ is a flow 2/3

: S SR 0/1 L
Prove: s still has no flow info it 0/1T ®0/1 ®0/1

. Since f is a flow, f*(s) =0

,in

 Toget f'(s) > 0, an augmenting
path must include an edge into s

» But then an augmenting path
starts at s, then returns fo s,
forming a cycle -- contradiction!

residual graph for this flow

20

FINISHING LEMMA 4: AUGMENT() IMPROVES FLOW

» Finally we argue value(f') = value(f) + bottleneck(f, P)
+ £ and f' are flows, so value(f’) = £'°* (s) and value(f) = fo%t(s)

« We thus show f"°*“(s) = f°%(s) + bottleneck(f, P)
 The augmenting path P is a simple path (leaving s exactly once)

 And there is no flow info s,
so the edge e € P leaving s is a forward edge

* This means augment(f, P) adds bottleneck(f, P) 10 f(e)
e SO f'°"(s) = fout(s) + bottleneck(f, P)

21

FORD-FULKERSON METHOD

* By Lemma 4, starting from any flow f,
if we can find an augmenting path P w.r.t f in Ry,

then we can use augment(f, P) to improve our flow

» Ford-Fulkerson does this repeatedly starting from an empty flow
(V,E))

1 FordFulkerson(G
for e 1n E
f(e) =0

while there 1is a simple s-t path P in Rf do
augment(f, P)
and update the residual graph Rf

NOOUOhsE WN

22

\F Yo
5

R RIHNERID

.

MAX-FLOW MIN-CUT THEOREM PROOF

23

PROOF STRATEGY

e Claim: when there is no augmenting path,
there is a cut with capacity equal to
the value of the current flow.

* Proving this will simultaneously

« prove the max-flow min-cut theorem,

« prove correctness of the Ford-Fulkerson method,
« solve the max flow problem, and

* solve the min cut problem

24

PROVING MAX

25

PROVING MAX FLOW = MIN CUT

» Proposition: if f is an s-t flow such that
fhere is no s-t path in the residual graph Ry,

then there is an s-t cut S s.t. value(f) = c%%t(S)

Understanding the proposition... :'
1/ g 1/1 g 1/1 ..'

/1 @ /] @] H
(]

flow f

residual graph Ry
If flow value = 2 containing no s-t paths

then cut exists with
capacity 2 = flow value

26

PROVING THE PROPOSITION

* Since fhere is no s-t path in Ry,

there Is a subset S of verticeswith s €S, t & S

such that § has no outgoing edges in R S Sua
O ouvrgoing edges

« What does this statement look like? 1) 47 RO &5

flow f want to prove: residual graph Rf
outgoing edges in G
from S carry the flow

27

PROVING THE PROPOSITION \e igen stoe

* Since there is no s-t path in Ry,
there Is a subset S of verticeswiths € S, t € S
such that § has no outgoing edges in R

« Claim: = value(f)
« Consider two types of edges. Type 1.
« yv exiting Sin G (uv € 6°**(S)iIN G, u € S,v ¢ S)

* Since S has no outgoing edge in Ry, 3
we know uv & Rf c

» This implies f(uv) = c(uv), as otherwise
uv would be a forward edge in R R
28

PROVING THE PROPOSITION \e igen stoe

« Claim: = value(f)
« Consider two types of edges. Type 2:

 uv entering Sin G
(uv € ™(S)ING, u & S, v ES)

* Since S has no outgoing edge in Ry,
we know fhere is no edge vu & Ry
(nhote vu would be directed out of §)

» This implies f(uv) = 0, as otherwise
vu would be a backwards edge in R

flow fin G
29

PROVING THE PROPOSITION

+ We just showed R R
» For edge uv directed out of S, ,’° o \\ O
fuv) = c(uv) : i
» For edge uv directed into S, S ;
fluv) =0 :
¢ SO FOU(S) = FI(8) = g (S =0 = coHS) ///’ m
. This proves the proposition. l.e., «'IQ N
given flow f, if there are no s-t paths in R, . &
then there is a cut matching the flow emaining 1o prove he iy

max-flow theorem, and the
correctness of Ford-Fulkerson

30

T

L
OO0 o
B SO S

R Bt
<5

JOIOOL .. . wF - R .. OO JOR
OO L . OO0 OO .
OOOOOOOOOTOL SOOI

v e N S e A e
_J . \ Sl .—\rw\/‘.¢~,"\-‘\a'.-‘\xi«'\a“‘\a"."»«“-"-;;-‘\-'u ’

_ AE COMPLEXITY

of the Ford-Fulkerson method

31

RUNTIME OF FORD-FULKERSON

« Depends on the implementation

1 FordFulkerson(G=(V,E))
for e 1n E
f(e) = 0

while there 1s a simple s-t path P in Rf do
augment(f, P)
and update the residual graph Rf

NOULE WN

« How do we find an augmenting pathe
« How many times do we need to augment before we terminate?

32

RUNTIME OF FORD-FULKERSON

« Assume we find any arbifrary augmenting path P,
using any technique, in 0(n + m) time
+ Then every time augment(f, P) is run, e lor some ore imationall.
we know only that the flow increases this may never terminate!
 [f capacities are integers, the increase is af least |
* In this case, if max flow is k then runtime is O(k(n + m))
» For max flow we assume a connected graph, so this is 0(km)

» Very bad if k is large

33

WORST CASE FOR THIS APPROACH

Figure 26.7 (a) A flow network for which FORD-FULKERSON can take O(E | f*|) time,
where f* is a maximum flow, shown here with | f*| = 2,000,000. The shaded path is an aug-
menting path with residual capacity 1. (b) The resulting residual network, with another augmenting
path whose residual capacity is 1. (¢) The resulting residual network.

34

EDMONDS-KARP APPROACH

Use BFS to find a shortest path (in ferms of number of edges)
and use that as an augmenting path

It furns out this always terminates after 0(nm) augmenting paths
e (even with real capacities)
BFS takes O0(n + m) time; 0(m) since the graph is connected

(] (] 2
So total runtime is O(nm) There are more sophisticated algorithms

with 0(V2E) and even 0(V3) runtimes
(optional: CLRS 26.4, 26.5)

In 2022, researchers found an almosi
linear fime algorithm, which leverages
techniques from convex opfimization

and sophisticated data structures 35

https://arxiv.org/abs/2203.00671
https://arxiv.org/abs/2203.00671

