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QUICK REVIEW OF LAST TIME
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RECALL: MAX-FLOW MIN-CUT THEOREM

• Theorem 3: every max 𝑠-𝑡 flow has value

equal to the capacity of a min 𝑠-𝑡 cut

• We give an algorithmic proof of this theorem

• (showing that one algorithm solves both

max-flow and min-cut at the same time)
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FORD-FULKERSON METHOD
Algorithm development

(mixed together with proof of max-flow min-cut theorem)
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FORD-FULKERSON METHOD

• Can undo previous decisions to improve the flow

• Can effectively “push back” some flow

using an augmenting path through a residual graph
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𝒔 𝒕

greedy flow

Same Ford as in 

Bellman-Ford :)
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𝒔 𝒕

“augmenting path”Pushes back the 

flow on this edge 

(negating its flow)

improved flow
So, what’s the residual graph,

how do we find an augmenting path, 

and how do we improve the flow?



RESIDUAL GRAPH
• A residual graph 𝑹𝒇 is defined for a given flow 𝒇 and graph 𝑮

• 𝑅𝑓 has the same vertices as 𝐺

• For each edge 𝑒 = 𝑢𝑣 in 𝐺,

• If 𝑓 e < 𝑐(𝑒), then 𝑅𝑓 contains a forward edge (𝑢, 𝑣)
with the remaining capacity 𝒄 𝒆 − 𝒇 𝒆

• If 𝑓 𝑒 > 0, then 𝑅𝑓 contains a backwards edge 𝒗, 𝒖
with capacity 𝒇(𝒆) representing flow that could be “pushed back”
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ANOTHER EXAMPLE RESIDUAL GRAPH
• Recall: for each edge 𝑒 = 𝑢𝑣 in 𝐺,

• If 𝑓 e < 𝑐(𝑒), then 𝑅𝑓 contains a forward edge (𝑢, 𝑣)
with the remaining capacity 𝒄 𝒆 − 𝒇 𝒆

• If 𝑓 𝑒 > 0, then 𝑅𝑓 contains a backwards edge 𝒗, 𝒖
with capacity 𝒇(𝒆) representing flow that could be “pushed back”
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CONTINUING WITH NEW MATERIAL
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FORD-FULKERSON METHOD

• Find a shortest path P from 𝑠 to 𝑡 in the residual graph

• If it improves the flow, we call it an augmenting path

• And use it to update the flow
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FORD-FULKERSON METHOD

• Find a shortest path P from 𝑠 to 𝑡 in the residual graph

• If it improves the flow, we call it an augmenting path

• And use it to update the flow
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FORD-FULKERSON METHOD

• Find a shortest path P from 𝑠 to 𝑡 in the residual graph

• If it improves the flow, we call it an augmenting path

• And use it to update the flow
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FORD-FULKERSON METHOD

• Find a shortest path P from 𝑠 to 𝑡 in the residual graph

• If it improves the flow, we call it an augmenting path

• And use it to update the flow
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FORD-FULKERSON METHOD

• Find a shortest path P from 𝑠 to 𝑡 in the residual graph

• If it improves the flow, we call it an augmenting path

• And use it to update the flow
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No path from 𝑠 to 𝑡 in 

residual graph. Done!



IMPROVING A FLOW 𝑓
GIVEN AN AUGMENTING PATH 𝑷

• An augmenting path w.r.t a flow 𝑓 is a simple 𝑠-𝑡 path in 𝑅𝑓

• Let 𝑃 be an augmenting path w.r.t 𝑓

• Let bottleneck(𝑓, 𝑃) be the minimum capacity of an edge in 𝑃

• We show this subroutine

augment(𝑓, 𝑃) always

improves the value of flow 𝑓
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no cycles!



LEMMA 4: AUGMENT() IMPROVES FLOW 𝑓

• Let 𝑓 be a flow in 𝐺 with 𝑓𝑖𝑛 𝑠 = 0,

and 𝑃 be an augmenting path w.r.t 𝑓

• Let 𝑓′ be the resulting flow after running augment(𝑓, 𝑃)

• Then 𝒇′ is a flow with 𝐯𝐚𝐥𝐮𝐞 𝒇′ = 𝐯𝐚𝐥𝐮𝐞 𝒇 + 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤(𝒇, 𝑷)

• That is, 𝐚𝐮𝐠𝐦𝐞𝐧𝐭(𝒇, 𝑷) increases the flow by 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤(𝒇, 𝑷)
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PROOF

• Claim: augment(𝑓, 𝑃) increases the flow by bottleneck(𝑓, 𝑃)

• First check 𝑓′ is a flow

• Prove capacity and conservation constraints, and 𝑓′𝑖𝑛
𝑠 = 0

• Are capacity constraints satisfied?

• We add/subtract bottleneck(𝑓, 𝑃) to/from each edge

• And bottleneck(𝑓, 𝑃) is the minimum of the smallest remaining 

capacity, and the current flow

• So capacity constraints are satisfied
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PROOF

• Claim: augment(𝑓, 𝑃) increases the flow by bottleneck(𝑓, 𝑃)

• How about conservation of flow?

• Consider how the flow into and out of each vertex 𝑢 ∉ {𝑠, 𝑡}
changes as a result of running augment(𝑓, 𝑃)

• We show the change in 𝑓𝑖𝑛 𝑢
is the same as the change in 𝑓𝑜𝑢𝑡 𝑢

• There are 4 cases, depending on whether the edges 

entering/leaving 𝑢 are forward or backward edges
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𝒖

Case 1: forward / forward

3/10 5/8

flow 𝒇

𝒖
3+b/10 5+b/8

new flow 𝒇′

(after augmenting)

Both 𝑓𝑖𝑛(𝑢) and 𝑓𝑜𝑢𝑡(𝑢) are 

increased by bottleneck(𝑓, 𝑃)

𝒖
7

residual graph 𝑹𝒇

3

3

5

augmenting path 𝑷 in 𝑹𝒇

Let 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤 𝒇, 𝑷 = 𝒃

forward forward

Case 2: backwards / backwards is similar.

Both 𝑓𝑖𝑛(𝑢) and 𝑓𝑜𝑢𝑡(𝑢) are decreased by 𝒃

𝒖
7 3

2/5 2
3

2/5 𝑓′𝑖𝑛
𝑢 = 5 + 𝑏

𝑓′𝑜𝑢𝑡
𝑢 = 5 + 𝑏

𝑓𝑖𝑛 𝑢 = 5
𝑓𝑜𝑢𝑡 𝑢 = 5
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𝒖

Case 3: forward / backwards

2/7 3/5

flow 𝒇

𝒖
2+b/7 3-b/5

new flow 𝒇′

(after augmenting)

Added and subtracted 

𝒃 terms cancel out

𝒖
5

residual graph 𝑹𝒇

2

3

2

augmenting path 𝑷 in 𝑹𝒇

Let 𝐛𝐨𝐭𝐭𝐥𝐞𝐧𝐞𝐜𝐤 𝒇, 𝑷 = 𝒃

forward backwards

Case 4: backwards / forwards is similar.
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𝑢 = 5

𝑓′𝑜𝑢𝑡
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𝑓𝑖𝑛 𝑢 = 5
𝑓𝑜𝑢𝑡 𝑢 = 5



SHOWING 𝑓′𝑖𝑛
𝑠 = 0

• Last step in showing 𝑓′ is a flow

• Prove: 𝑠 still has no flow into it

• Since 𝑓 is a flow, 𝑓𝑖𝑛 𝑠 = 0

• To get 𝑓′𝑖𝑛
𝑠 > 0, an augmenting

path must include an edge into 𝒔

• But then an augmenting path

starts at 𝑠, then returns to 𝑠,
forming a cycle -- contradiction!
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FINISHING LEMMA 4: AUGMENT() IMPROVES FLOW

• Finally we argue value 𝑓′ = value 𝑓 + bottleneck 𝑓, 𝑃

• 𝑓 and 𝑓′ are flows, so value 𝑓′ = 𝑓′𝑜𝑢𝑡
(𝑠) and 𝑣𝑎𝑙𝑢𝑒 𝑓 = 𝑓𝑜𝑢𝑡(𝑠)

• We thus show 𝑓′𝑜𝑢𝑡
𝑠 = 𝑓𝑜𝑢𝑡 𝑠 + bottleneck(𝑓, 𝑃)

• The augmenting path 𝑃 is a simple path (leaving 𝑠 exactly once)

• And there is no flow into 𝑠,

so the edge 𝑒 ∈ 𝑃 leaving 𝑠 is a forward edge

• This means augment(𝑓, 𝑃) adds bottleneck(𝑓, 𝑃) to 𝑓(𝑒)

• So 𝑓′𝑜𝑢𝑡
𝑠 = 𝑓𝑜𝑢𝑡 𝑠 + bottleneck(𝑓, 𝑃)
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FORD-FULKERSON METHOD

• By Lemma 4, starting from any flow 𝑓,
if we can find an augmenting path 𝑃 w.r.t 𝑓 in 𝑅𝑓,

then we can use augment 𝑓, 𝑃 to improve our flow

• Ford-Fulkerson does this repeatedly starting from an empty flow
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MAX-FLOW MIN-CUT THEOREM PROOF
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What we have proved so far: augmenting improves flow.

We don’t know yet if

1. we can actually obtain the max flow, or

2. whether max-flow = min-cut.



PROOF STRATEGY
• Claim: when there is no augmenting path,

there is a cut with capacity equal to

the value of the current flow.

• Proving this will simultaneously

• prove the max-flow min-cut theorem,

• prove correctness of the Ford-Fulkerson method,

• solve the max flow problem, and

• solve the min cut problem
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PROVING MAX FLOW = MIN CUT
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We actually proved the ≤ direction already (Lemma 2 last time)

 when discussing upper bounds for max flow

Two directions:

max flow ≤ min cut and max flow ≥ min cut

It remains to prove the ≥ direction.



PROVING MAX FLOW ≥ MIN CUT

• Proposition: if 𝑓 is an 𝑠-𝑡 flow such that
there is no 𝑠-𝑡 path in the residual graph 𝑅𝑓,

then there is an 𝑠-𝑡 cut 𝑆 s.t. value 𝑓 = 𝑐𝑜𝑢𝑡 𝑆
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𝒔 𝒕

1/1
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flow 𝒇

𝒔 𝒕

1
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1

1
111
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1

residual graph 𝑹𝒇

containing no 𝑠-𝑡 paths

then cut exists with 

capacity 2 = flow value

If flow value = 2

Understanding the proposition…



PROVING THE PROPOSITION

• Since there is no 𝑠-𝑡 path in 𝑅𝑓,

there is a subset 𝑆 of vertices with 𝑠 ∈ 𝑆, 𝑡 ∉ 𝑆
such that 𝑆 has no outgoing edges in 𝑅𝑓

• What does this statement look like?
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want to prove: 

outgoing edges in 𝑮 

from 𝑺 carry the flow



• Since there is no 𝑠-𝑡 path in 𝑅𝑓,

there is a subset 𝑆 of vertices with 𝑠 ∈ 𝑆, 𝑡 ∉ 𝑆
such that 𝑆 has no outgoing edges in 𝑅𝑓

• Claim: 𝒄𝒐𝒖𝒕 𝑺 = value(𝑓)

• Consider two types of edges. Type 1:

• 𝑢𝑣 exiting 𝑺 in 𝑮 (𝑢𝑣 ∈ 𝛿𝑜𝑢𝑡(𝑆) in 𝐺, 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆)

• Since 𝑆 has no outgoing edge in 𝑅𝑓,

we know 𝑢𝑣 ∉ 𝑅𝑓

• This implies 𝑓 𝑢𝑣 = 𝑐 𝑢𝑣 , as otherwise 
𝑢𝑣 would be a forward edge in 𝑅𝑓

28

𝒔

residual graph 𝑹𝒇

No outgoing edges 
in 𝑅𝑓 from 𝑺PROVING THE PROPOSITION

flow 𝒇 in 𝑮

𝒔

𝒗

𝒖



• Claim: 𝒄𝒐𝒖𝒕 𝑺 = value(𝑓)

• Consider two types of edges. Type 2:

• 𝑢𝑣 entering 𝑺 in 𝑮
(𝑢𝑣 ∈ 𝛿𝑖𝑛(𝑆) in 𝐺, 𝑢 ∉ 𝑆, 𝑣 ∈ 𝑆)

• Since 𝑆 has no outgoing edge in 𝑅𝑓,

we know there is no edge 𝑣𝑢 ∉ 𝑅𝑓

(note 𝑣𝑢 would be directed out of 𝑆)

• This implies 𝑓 𝑢𝑣 = 0, as otherwise
𝑣𝑢 would be a backwards edge in 𝑅𝑓
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𝒔

residual graph 𝑹𝒇

No outgoing edges 
in 𝑅𝑓 from 𝑺PROVING THE PROPOSITION

flow 𝒇 in 𝑮

𝒔

𝒖𝒗



• We just showed

• For edge 𝑢𝑣 directed out of 𝑆,

𝑓 𝑢𝑣 = 𝑐 𝑢𝑣

• For edge 𝑢𝑣 directed into 𝑆,

𝑓 𝑢𝑣 = 0

• So 𝑓𝑜𝑢𝑡 𝑆 − 𝑓𝑖𝑛 𝑆 = 𝑐𝑜𝑢𝑡 𝑆 − 0 = 𝑐𝑜𝑢𝑡 𝑆

• This proves the proposition. I.e.,
given flow 𝑓, if there are no 𝑠-𝑡 paths in 𝑅𝑓,

then there is a cut matching the flow
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𝒔

𝒗

𝒖

𝒔

𝒖𝒗

PROVING THE PROPOSITION

Note this was the last thing 

remaining to prove the min-cut 

max-flow theorem, and the 

correctness of Ford-Fulkerson



TIME COMPLEXITY
of the Ford-Fulkerson method
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RUNTIME OF FORD-FULKERSON

• Depends on the implementation

• How do we find an augmenting path?

• How many times do we need to augment before we terminate?
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RUNTIME OF FORD-FULKERSON

• Assume we find any arbitrary augmenting path 𝑃,

using any technique, in 𝑂(𝑛 + 𝑚) time

• Then every time augment(𝑓, 𝑃) is run,

we know only that the flow increases

• If capacities are integers, the increase is at least 1

• In this case, if max flow is 𝒌 then runtime is 𝑶(𝒌 𝒏 + 𝒎 )

• For max flow we assume a connected graph, so this is 𝑶 𝒌𝒎

• Very bad if 𝒌 is large
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If capacities are reals (and in 

particular some are irrational), 

this may never terminate!



WORST CASE FOR THIS APPROACH
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EDMONDS-KARP APPROACH

• Use BFS to find a shortest path (in terms of number of edges)

and use that as an augmenting path

• It turns out this always terminates after 𝑶 𝒏𝒎 augmenting paths

• (even with real capacities)

• BFS takes 𝑂(𝑛 + 𝑚) time; 𝑶(𝒎) since the graph is connected

• So total runtime is 𝑶 𝒏𝒎𝟐
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There are more sophisticated algorithms 

with 𝑂(𝑉2𝐸) and even 𝑂(𝑉3) runtimes

(optional: CLRS 26.4, 26.5)

In 2022, researchers found an almost 

linear time algorithm, which leverages 

techniques from convex optimization 

and sophisticated data structures

https://arxiv.org/abs/2203.00671
https://arxiv.org/abs/2203.00671

