CS 341: ALGORITHMS

Lecture 19: intractability |
Readings: see website

Trevor Brown
https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

How to insert USB
PP weony

. ’ Wrong
INTRACTABILITY

Studying the hardness of problems

The Complexity Class P

Algorithm Solving a Decision Probl: An algorithm A is said to solve
a decision problem II provided that A finds the correct answer (“yes" or
“no") for every instance I of Il in finite time.

Polynomial-time Algorithm: An algorithm A for a decision problem II is
said to be a polynomial-time algorithm provided that the complexity of
Ais O(n*), where k is a positive integer and n = Size(I).

The C lexity Class P d. the set of all decision problems that
have polynomial-time algorithms solving them. We write II € P if the
decision problem I is in the complexity class P.

Knapsack Probl

2023-11-16

THIS TIME

Intractability (hardness of problems)
Decision problems
Complexity class P
Polynomial-time Turing reductions

Introductory reductions
Three flavours of the traveling salesman problem

Decision Problems

Decision Problem: Given a problem instance I, answer a certain question
“es" or "no".

Problem Instance: Input for the specified problem.

Problem Solution: Correct answer (“yes” or “no") for the specified
problem instance. I is a yes-instance if the correct answer for the

instance [is “yes”. I is a no-instance if the correct answer for the
instance [is “no”.

Size of a problem instance: Size(]) is the number of bits required to
specify (or encode) the instance I.

Relative problem hardness2

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

2023-11-16

Cycles in Graphs

Example: all-pairs-shortest-paths easily
Polynomial-time Turing Reductions reduces fo single-source-shortest-path
Suppose I1; and Tl are problems (not necessarily decision problems). A Areduction ypicaly:
(hypothetical) algorithm B to solve I1; is called an oracle for Il,. 1. transforms the larger
Suppose that A is an algorithm that solves I1;, assuming the existence of problem’s input so it can be
an oracle B for I1,. (B is used as a subroutine within the algorithm A.) fed fo the oracle, and
2. transforms the oracle’s
Then we say that A is a Turing reduction from II; to Il;, denoted outputinto a soluion fo fhe
m <7 11, larger problem.
A Turing reduction A is a polynomial-time Turing reduction if the
running time of A is polynomial, under the assumption that the oracle B
has unit cost running time.
If there is a polynomial-time Turing reduction from I1; to Il, we write
1 <} 1.
Informally: Existence of a polynomial-time Turing reduction means that if
o) ’ we can solve I1; in polynomial time, then we can solve II, in polynomial
A hamiltonian cycle is a cycle that passes through every vertex in V' time.
exactly once.
7 8
Travelling Salesperson Problems Positive edge We will use polynomial-time Turing reductions to show that different
weights versions of the TSP are polynomially equivalent: if one of them can be
Return type solved in polynomial time, then all of them can be solved in polynomial
"apath/cycle H"

time. (However, it is believed that none of them can be solved in
polynomial time.)

Is TSP-Dec <}, TSP-Optimal Value? We olready know

Return type

. Retum! . - TSP-Dec <} TSP-Optimal Value
apositive integer T
- TSP-Dec <} TSP-Optimization
1s TSP-Dec <} TSP-Optimization? ~ We show

TSP-Optimal Value <T TSP-Dec
"yes/no"

TSP-Optimization <F TSP-Dec

TSP-Optimal Value <], TSP-Dec

Use binary search! How to define the
starting range (lo, hi) to search?

TSP-Optimal Value <}, TSP-Dec

TSP-Optimal Value input: G, w
3

Algorithm: TSP-OptimalValue-Solver (G, w)
external TSP-Dec-Solver
hi Ecsﬂ‘ wle) <! Largest possible cycle could include every edge |
lo+0 [0is smallest possible weight for any cycle |
if mot TSP-Dec-Solver(G,w, hi) then return (o)

. : Maybe there is no
while hi > o Hamiltonian cycle, at all

TSP-Dec) also needs a target T mid lg-zxﬂj

What if we try TSP-Dec(G, w, 100)2 do if TSP-Dec-Solver(G. w, mid) s this @ *poly-fime reduction?”

It returns true. But we don't learn How can we learn the exact optimal then hi +— mid poly 3

optimal value... just that it's <100 value by making such calls? else lo + mid + 1 ot TSP-Decsor ol 1

.., if we assume TSP-Dec-Solverruns in ime,
return (hi) is the runtime a polynomial in the input size? |

Questions: (1) What's the input size2

This is a standard binary search technique. (2) What's the runfime?

12

[What's the size of the input I = (G, w)? |
Size(l) = Size(G) + Size(w)

But wait... G and w could be representedin many different ways.
Could the choice of affect our ity result?

Only for very inefficient representations

For example if we store
(that are larger than optimal. >

weights in unary

We rule out such inefficient representations for the
purpose of proving polynomial runtime

Polynomial differencesin size do not matter.
Exercise:if T € poly(Size(1)*°) then T € poly(Size(I))

TSP-Optimal Value <% TSP-Dec
Let's assume 0(1) time for | Later we'll see thisisn't
operations on weights | needed to show polytime
Algorithm: TSP-OptimalValue-Solver(G, w)
external TSP-Dec-Solver
3 e
lo -0
if not TSP-Dec-Solver(G,w, hi) 4mien return (oc)

while hi > lo # iterations: 0(log(hi — 10))

if TSP-D ver(G, w, mid)
do then hi < mid
else lo « mid + 1

return (hi)

[Runfime T() € OE| + log Zecr w(e))]

COMPARING T(I) AND Size(1)

How to compare log Y, . w(e) and X.cz(logw(e) + 1)?
Eees(logw(e) + 1) = (logw(ey) + 1) + (logwie;) + 1) + -+ (log (w(eier)) + 1)
Can we combine these terms into one log using log x + logy = log xy?
Zeer(logw(e) +1) = (logwle;) +1log2) + + -+ (Iog (w(em)) +log 2)
Zecr(logw(e) + 1) =log2w(e;) 2w(ey) ... Zw(em) =log[leer 2w(e)
So how to compare log[leer 2w(e) and log Y. w(e)?

All w(e) are positive integers, 50 [eep 2w(e) = Yocpw(e)

Since log is increasing on Z*, log[leep 2w(e) = log Y .cpw(e)

2023-11-16

[What's the size of the input I = (G,w)2 |
Size(I) = Size(G) + Size(w)

with each list containing edges fo neighbouring vertices,

So, suppose G is represented as an array of adjacency lists (one list for each vertex),
and an edge is represented by a weight and the name of the farget vertex

Bits to store the
name of the target
vertex(in 1..|V])

Bits to store weight of the edge
(storing w(e) takes logw(e) + 1 bits)

Size(D) = V] + Z(Iog w(e) +1+loglV| +1)
Lt ,
T
Array of empty lsts for all vertices v For all edges

l Let's relate this to runtime... what's the runtime2

COMPARING T(I) AND Size(l)

T € O(IE| +logXeer w(e))

Size(I) = |V|+ Xeeg(logw(e) + 1 +loglV| + 1)
= V] + Zeep(logw(e) + 1) + Zeep(loglV] + 1)
= V] + Zoep(logw(e) + 1) + Zeep(log|V]) + |E|

Want to show T(I) € 0(Size(I)) for some constant ¢ (we show c=1)

O(IE| +10gTeer w(e)) € O(IV| + Eep(logw(e) + 1) + Epep loglV| + |ED)

& 0(log Lees w(e)) € O(IV| + Zeeg(logw(e) + 1) + eep loglV])
How to compare logY..w(e) and X (logw(e) + 1)?

COMPARING T(I) AND Size(l)
We in fact show T(I) € 0(Size(I))

0(log Xeer w(e)) € O(IV| + Zeep(logw(e) + 1) + Zeeg loglV)
How to compare logY..w(e) and X (logw(e) + 1)?

We just saw Eeep(logw(e) + 1) = log[1ecg 2w(e) = log X.cpw(e)

So this reduction has runtime that is

ize(I)° _
So T(I) € 0(Size(I)°) where ¢ = 1 l polynomial in the input size!

TSP-Optimal Value <7},

TSP-Dec

Algorithm: TSP-OptimalValue-Solver(G, w)

external TSP-Dec-Solver
hi+ Y

puwle)

if not TSP-Dec-Solver(G,w, hi)

while hi > lo

mid

if TSP-Dec-Solver(G, w, mid)
do

then hi
else o «
return (hi)

mid
mid + 1

TSP-Optimal Value <., TSP-Dec

Algorithm: TSP-OptimalValue-Solver(G. w)
external TSP-Dec-Solver
hi Y. cpwlc

2eek
lo 0
if not TSP-Dec-Solver(G,w.hi) then return
while hi > lo

mid ¢

if TSP-Dec-Solver (G, u:
do
then ki « mid
else 1o ¢
return (ki)

mid

TSP-Optimal Value <}, TSP-Dec

Algorithm: TSP-OptimalValue-Solver (G, u
external TSP-Dec-Solver

then return (oc)

Exercise: show the variant of this reduction
where linear search is used instead of
binary searchis not poly(Size(I))

So TSP-OptimalValue-Solveris polytime... But is it a
correct reduction from TSP-Optimal Value to TSP-Dec?

Need to prove:
TSP-OptimalValue-Solver(G,w)
returns the weight W
of the shortest Hamiltonian Cycle (HC) in G

(o0

Sketch: We return o iff there is no HC.
Loop invariant: W € [lo, hi].
So, at termination when hi

lo,
we return exactly hi = W.

TSP-OptimalValue-Solver remains polytime even if
the oracle runs in polytime instead of O(1)!

hi ¢ ¥ g wie)

lo 0

if not TSP-Dec-Solver(G,w, hi) then return (oc
while /i

m

The key idea is: Consider polynomials Pg(s) and
Py (s) representing the runtime of a reduction and ifs
oracle, respectively, on an input of size s.
Worst possible runtime happens if every step in the

reductionis a call fo the oracle.
This is Pr(s)Py(s) --- multiplication of polynomials.

L
if TSP-Dec-Solver(G. w, mid)
do
then i «
else lo ¢
return (i)

mid

mid + 1

But

iplyi jals of degrees d, d;
polynomial of degree < d; + d,. Example:
Py(x) = 5% + 10x + 100

Py(x) = 20x% + 20

Py(0P,(x) = (5x° + 10x + 100)(20x® + 20)
= 100x° +200x* + 2000x° + 100x? + 200x + 2000

REACHED THIS POINT

(but willrecap the comparison of T(I) and Size(l) next time)

TSP-Optimal Value < ;_ TSP-Dec So, TsP-OptimalValue-Solver s polytime,
and is a correct reduction.

Algorithm: TSP-OptimalValue-Solver(G, w
external TSP-Dec-Solver

hi ¥ cpwie)

lo 0

We have therefore showr
Optimal Value is polytime
reducible to TSP-Dec

2023-11-16

s ; ; So, if an 0(1) implementation of TSP-Dec-Solver
if not TSP-Dec-Solver(G:.w. hi) then return (o0) | oyicts then we have a polytime implementation of
while hi > lo TSP-Optimal-Value-Solver!
mid ¢

do JiF TSP-Dec-Solver(G. w, mid)
then hi « mid In fact, TSP-OptimalValue-Solverremains polyfime
else lo ¢ mid + 1 ‘

return (hi)

evenif the implementation of the
oracle runs in polytime instead of O(1)!

PROVING REDUCTIONS CORRECT

In more complex reductions where we transform the input
before calling the oracle, we willneed a more complex proof:

(A) If there is a(n optimal) solution in the input, our
fransformation will preserve that solution so the oracle can find
it, and

(B) Our transformation doesn't introduce new solutions that are
not present in the original input

(i.e., if we find a solution in the transformed input, there was
a corresponding solution in the original input)

More on this later

24

Exponentially larger than
optimal representation!

INPUT SIZE CHEAT SHEET
Perfectly fine

Input 1
choices of Size(l)

int x 1or

Examples of BAD
choices of Size(l)
x

To write down x=1,
need log(1)+1=1 bit. | intx

[log(x)] +1 For x=2 this is 2 bifs
i " - i
(can simplify to For x=4, 3 bits. Groph (V.£) ZV w?r
log(x) + 1 or log x) IE 1"l or
Graph (V,E) V] or H0)

|E| or Pick any expression that A[1..n] ofint 2" or
V|2 or makes your analysis easy XAl

with weights W: |V| + |E| or
Tecr(log(w(e)) +1) or Pseudo-polynomial ~= no exponentiation
of non-constant terms
—

Suvey (log(w(u,v)) +1) or
any sum of terms abov:

A[1..n] of int nor Technically any pseudo-polynomial
Ti(log(A[iD) + 1) combination of these terms is fine.
e e For example, the following is fine:

%, Qoglmy) + 1) AE +1V1) - See(log(w(e)) + 1)

What's the size of the input 12

Size(l) = Size(G) + Size(w)

But wait... G and w could be represented in many different ways.
Could the choice of ion affect our ity result?

Representation 1: What if the entire graphis simply represented as a weight matrix
W which contains a weight w,, foreachu,v € V (= if an edge does not exist)

Consider weight wy,,. It takes @(logw,,) bits (log(w,,) + 1) fo store this weight.

We would then have: Size(Ry) = Z 2 log(wyy) + 1

uev vev

[What would it mean to have a runfime T that is polynomial in Size(R,)?]
[We say T is polynomial in Size(Ry) (denoted T € poly(Size(Ry)) iff:]
3 constant ¢ s.t. for all I, we have T € 0(Size(R,)¢)

Representation 3: What if we were to represent the graph as a weight matrix w but
write all weights in unary, instead of binary (so it takes w,, bits fo store weight w,,).

Size(R) =Y.) (W)

eV vev

Compare with Size(R,) = Zz log W) + 1
representation 1:) ugvvgv()

For example, in a graph where there are
0(1) nodes and all edges have weight w:
Size(R,) = ©(log, w) and Size(Rs) = O(w).

[Inthis case, Size(Ry) € 0(250)

For this (very stupid)
representation, we
would then have:

This can be
exponentially larger
than Size(R,)!

So, some algorithms could be

polynomial in Size(Rs)
but exponential in Size(R,)

We should rule out this highly
for the purpose of proving polynomial runtime

Problem: it's not clear what the
optimal representationis...

BONUS SLIDES

efficient vs inefficient input representations

2023-11-16

Representation 2: What if the graph were represented as an array of adjacency lists
(one list for each vertex), with each list containing edges to neighbouring vertices,
where an edge is represented by a weight and the name of the target vertex2

Size(Ry) = V] + 2 (log(wy,) + 1+ log [V] + 1)

WeE

Weightof | | Name of the

target vertex

Array with one list per vertex v he adge

Compare with Size(R,) = Z 2 lo +1
representation 1: ze(Ry) G4 8 (Wuw)

LOWER BOUNDING Size (1)

To prove that a reduction’s runtime T(I) on input I

The following are valid choices
of L(I) for various input types:

is polynomial in the size of I: 11.,:(';() P
Define a lower bound L(I) on the size of I Graph(v,E) ~ 1or
. . possibly with V| or |E| or
For every possible representation I of I, weights W V] + |E| or
L(D < Size(Ig) should hold ecr(log(w(e)) + 1)
Can be proved with information theory, or AR ;iodogu[i])ﬂ)

ad-hoc; outside the scope of the course n xn matrixm

or
In this course, we can be a bit sloppy, and 31 (log(my

)+1)

just use the table of valid choices here to

Justifying sloppy analysis:

obtain a term for each variable in I Polynomial differenc

esin

Idea: determine whether runtime is polynomialin the
size of the optimal representation of the input

What if we can argue the runfime is

polynomial in some lower bound on
the size of the input2

choices of L(I), such as |[V| vs
IVI? vs (IEl + |[V])*° don't matter.

Then, if we can show T(D) < poly(L(D),
we have actually shown T(I) < poly(size(I)) ch::;:fg;ﬁ;?,ffjﬂ‘;’;‘:'ﬂn

[Erercie: T) € polyL)™) I T() € poly ()21 2oy (tD) or ot

TSP-Optimal Value <%, TSP-Dec

Algorithm: TSP-OptimalValue-Solver(G, w)
external TSP-Dec-Solver,
hil = e wle)

—; What's the relationship between the
o+ 0 reduction’s runtime T(I) and L(I)2
if not TSP-Dec-Solver(G,w, ki) €n return (oc)
iterations: 0(log(hi — lo))

=log¥eepw(e)

while hi = lo
mid ¢ | hitle |
if TSP-Dec-Solver(G, w, mid)
then hi + mid
else lo + mid + 1
return (hi)

This is a standard binary search technique.

So what's a valid L(I) for an input I to
TSP-OptimalValue-Solver?

Inputis a graph G with weight matrix w.
From the table of valid L(I) choices,
we let L(I) = |E| + Zecp(log(w(e)) +1).

[70 = 0B +logZecrw(e)]
[and L(h) = 0(El + Secsllog(w(@)) + 1) |

As we argued earlier,
T(1) € poly(L(D)

And thus T(I) € poly(Size(I))

So this has runtime that is
polynomial in the input size!

2023-11-16

