CS 341: ALGORITHMS

Lecture 2: divide & conquer |

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca



https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

ONE DOES Hll'l' SIMPLY,

‘ﬂ

, : »
uul_!gli“smn RECURSION
WITHOUT UNDERSTANDING RECURSION

DIVIDE AND CONQUER

Notable algorithms: mergesort, quicksort, binary search, ...




DIVIDE-AND-CONQUER DESIGN STRATEGY

divide: Given a problem instance I,
consfruct one or more smaller problem instances I, ..., 1,

These are called subproblems

Usually, want subproblems to be small
compared to the size of I (e.g., half the size)

conquer: For1 < j < a, solve instance I; recursively,

obtaining solutions S, ..., Sa

combine: Given solutions S, ..., Sa,
use an appropriate combining function to find
the solution § to the problem instance I

l.e., § = Combine(s,, ..., Sa).



D&C PROTO-ALGORITHM

1 DnC template (I)

2 1f BaseCase (I) return Result(Il)

3 subproblems = [I 1, I 2, ..., 1 al

4 subsolutions = |[]

5 for 7 = 1..a

6 | subsolutions[]j] = DnC template (Ll 7j)
7

feturn Combline (subsolutions)



CORRECTNESS

N o bW N

DnC template (I)

1f BaseCase (I) return Result (I)

subproblems = [I 1, I 2, ..., 1 a]
subsolutions = |[]

for 7 = 1..a

| subsolutions[]j] = DnC template (I 7j)

feturn Combline (subsolutions)

Prove base cases are correct

Inductively assume subproblems are solved correctly

Show they are correctly assembled into a solution



RUNTIME/SPACE COMPLEXITY?

<l o O b W N

DnC template (I)

1f BaseCase (I) return Result(Il)

subproblems = [I 1, I 2, ..., I a]
subsolutions [ ]

for 7 = 1..

| subsolutions|[j] = DnC template (Il 7j)

feturn Combline (subsolutions)

Technigues covered In this lecture

Model complexities using recurrence relations
Solve with substitution, master theorem, eftc.



WORKED EXAMPLE: DESIGN OF MERGESORT

Here, a problem instance consists of an array A of n integers, which we
want to sort in increasing order. [ he size of the problem instance is 7.

Split A into two subarrays: A; consists of the first [ | elements
in A and Ap consists of the last | 5 | elements in A.

—

Run on Ay and Ap.

After A; and Ap have been sorted, use a function to
merge A; and Ap into a single sorted array. Recall that this can be done
In time ©(n) with a single pass through A; and Ap. We simply keep
track of the current element of A; and Ap, always copying the smaller
one into the sorted array.




DIVIDE
57 138 141 19 T4 0% 16 s ;a2




MERGE: CONQUER AND COMBINE




MERGE SIMULATION

L R

R R

O

10



PSEUDOCODE FOR MERGESORT

1
2
3
4
5
6
7
3

Mergesort (A[l..n])

1f n == 1 then return A
nl. = ceil (n/2)

aLL = A[l..nL]

aR = A[ (nL+1)..n]

sLL, = Mergesort (aL)

sR = Mergesort (aR)

return Merge (sL, sR)

11



PSEUDOCODE FOR MERGE

I Merge (aL[1l..nL], aR[1l..nR])

2 aout[1l. (nL+nR)] = empty array

3 iL =1 ; iR =1 ; iout = 1

4 iL < nL
5 while iL < nL and iR < nR alut

6 if aL[iL] < aR[iR]

7 aout [iOut] = aL[iL]

8 1L++ ; 10ut++

9 else

10 aOut [10ut] = aR[iR]

11 1IR+F 7 10ut+t

12 while 1L < nL

13 aOut [i0Out] = aL[iL] iL, < nlL
14 Gel-EE e N OUE+F alOut

15 while iR < nR

16 aout [10ut] = aR[iR]

17 iR++ ; iout++

There are still elements
left in both orroys

iR < nR

Right array is out of elements

aR

iR = nﬁT

return aoOut

=
(00)

ﬁ Left array is out of elements

12




0 < o0 U k&= Ww N -

ANALYSIS OF MERGESORT

Mergesort (A[l..n])

1f
nkL
aL
aR
sL
sR

O(1)

== | then return A

ceil (n/2) —— o(1)

All..nL]

Al (nL+1)..n] _—

j ???

Mergesort (aL)
Mergesort (aR)

O(n) or O(1)

So, MergeSort(A) takes O(n)
time, plus the time for its
two recursive calls!

How can we analyze this
recursive program structure?

return Merge (sL, sR) % o(n)

13




RECURRENCE RELATIONS

A crucial analysis tool for recursive algorithms

14



RECURRENCE RELATIONS

Suppose aj, a Is an infinite sequence of real numbers.

A is a formula that expresses a general term «,, in
terms of one or more previous terms «;

A recurrence relation will also specify one or more starting at

aj .

a recurrence relation means finding a formula for a,, that does
Involve any previous terms

There are many methods of solving recurrence relations. Two important
methods are and the

15



MATHEMATICALLY EXPRESSING
THE COMPLEXITY OF MERGESORT

Let 7(n) denote the time to run on an array of length n.

takes timeBeiEY,

takes time 7' ([47) + 7 (| %)) T(n) is a function of T(...) so
()

T is a recurrence relation

takes time ©(n

. How can we compute/solve for T(n)<e
Recurrence relation:

AR ; n e To make this easier,
21) + T (\_;,j) +O(n) ifn>1 assume n = 2¢

if n=1. which lets us ignore
floors/ceilings

16



If pants wore pants, would it wear them

like this?

or like this?

Compare vs:

Tr(n)

Tn—1)

T(n—2)

RECURSION TREE METHOD

Evaluating recurrences with T(n/c) terms

Recursion tree

17



RECURSION PN -
TREE METHOD msort(n/i)/\rﬁsort n/2) — 2(cn/2) =Ch

PN /\

msort(n/4)  msort(n/4) msort(n/4) msort(n/4) —> 4(cn/4) =

/\ /\

msort(1 msort(1 msort(1 msort(1 n(c) = Cnh

total runtime for level Total = cn * #levels
0 1 cn cn

Total = cnlog,(n)

1 2 c(n/2) 2c(n/2) =cn
5 4 (/9 4e(n/4) = en So, mergesort has
runtime O(nlogn)
logn n c(n/n) =c nc(n/n) = cn Can also compute

using a table...

18



RECURSION TREE METHOD FORMALIZED

Sample recurrence for

ol ) /2 if 2 > 1 is a power of 2
problem size n

two recursive calls on {‘?’1‘ () .
W) N

(l V9 = i

where ¢ and d are constants.

We can solve this recurrence relation when 7 is a power of two, by
constructing a , as follows:

, say N, having the value 7T (n).
of N. These children, say N; and N>,
have the value 1'(n2/2), and the value of N is replaced by ¢i.

m Repeat this process recursively, terminating when a node
receives the value 7T°(1) = d.

m Sum the values on each level of the tree, and then compute
the , the result is 1 (n).

19



GUESS-AND-CHECK METHOD In Math,

Suppose we have the following recurrence [Uuse ‘H\Q

T(0) =4; T(n) =T(n—1)+6n—>5 GUESS ¢ HoPt
Guess the form of the solution any way you like Mefhod
My approach: the substitution method

Recursively substitute the formula info itself

Try to identify patterns to guess the final closed form

Prove that the guess was correct

20



SUBSTITUTION METHOD: WORKED EXAMPLE

Recurrence: T(0)=4;| Tnh)=Tn—1)+6n-5

Tm—-1)=T(n—-1)—-1)+6(n—-1)-5

=(T(n—-—3)+6(Nn—2)—5)+ 2(6n

Compare: new termse
+(6n-5) -6

Tn)=(Tn-2)+6(n—1)—-5)+ V(subsﬁiu’re)
=Tn—-—2)+2(6n—5)—6 ry to preserve structure)

—5)—6 (substitute)

=T(n—-3)+3(6n—-5)—6(1+2)

Hnew’rerms? +(6n-5) -2(6)

... Identify patterns and guess what happens in the limit
=T0)+n6n—-5)—-6(1+2+3+--+(n—1)) = guess(n)

21



guess(n) =T(0) + n(bn —5) — 6('1 +2+4+34+--+(n-— 1)')

n(n-1)
2

Usel+2+--+(n—-1)=

guess(n) =4+ 6n*—-5n—6n(n—1)/2 (simplify)
=3n’—-2n+4

Are we donev¢

The form of guess(n) was an educated guess.
To be sure, we must prove it correct using induction

22



Recal: T(0) =4;T(n) =T(n—1)+6n—-5; guess(n) =3n*-2n+4

Want to prove: guess(n) =T(n) for all n
Base case: guess(O) — 3(0)2 _ 2(0) 4+ 4= T(O) PROOF

23



Recal: T(0) =4;T(n) =T(n—1)+6n—-5; guess(n) =3n*-2n+4

Want to prove: guess(n) =T(n) for all n

Inductive case: suppose guess(n) =T(n) forn =0,

PROOF

show guess(n+1)=T(n+ 1).

Tm+1) =T(n)+6(n+1)-—5
= guess(n) + 6(n+1) —5
=3n*-2n+4+6(n+1) -5
=3n°+4n+5
guessm+1) =3(n+1)?*-2(n+1)+4
=3n’+4n+5=Tn+1)

(by definition)

(by inductive hypothesis)
(substitute)

(simplify)

(by definition)

(simplify)

24



ANOTHER APPROACH

Suppose you look for a while at the previous recurrence:
T(0)=4;Tn)=T(n—1)+6n-5
With some experience, you might just guess it's quadratic
If you're right, it should have the form:
an? + bn + ¢ for some unknown constants a, b, ¢
So, Just carry the unknown constants into the proof!

You can then determine what the constants must be
for the proof to work out

25



T(0)=4;T(n)=T(n—1) +6n—5; guess(n) = an?* + bn +c
Want to prove: guess(n) =T(n) for all n
Base case: guess(0) = a(0)*+b(0)+c=T(0) =4
this holds iff c = 4 (a, b are not constrained)

Inductive case: suppose guess(n) =T(n) forn = 0,
show guess(n+1)=T(n+ 1).

Tm+1) =Tn)+6(n+1)—5 (by definition)
= guess(n) +6(n+1)—5 (by inductive hypothesis)
=an‘+bn+4+6(n+1)—>5 (substitute)

=an*+(b+6)n+5 (simplify)

26



Recall: guess(n) = an®* + bn+ ¢ where ¢ = 4

Inductive case: suppose guess(n) =T(n) forn =0,
show guess(n+1)=T(n + 1).

Tn+1) =an*+(b+6)n+5 (continue previous slide)
guessm+1) =an+1)?*+b(n+1)+4 (by definition and ¢ = 4)
=an*+2n+1)+bn+b+4 (simplify,and...)
=an’+ (2a+ b)n+ (a+ b + 4) (rearrange polynomial)
We want this to be equalto T(n + 1) o nuetive

an*+ a+bn+(a+b+4)=an*+ (b+6)n+5 hypothesisis correct
fora=3,b=-2,c=4

equivalentto (2a+b) =(b+6)and(a+b+4) =5 — -~
firstimpliesa = 3 plug ainto secondtogetb =5—4—-3 = -2

27



MASTER THEOREM FOR RECURRENCES

Provides a formula for solving many recurrence relations

We start with a simplified version

Considerrecurrence: T(1)=d ; T(n) =aT (g) + 0(nY)
where a > 1,b = 2 and n is a power of b (i.e., n = b’ for integer j)

Example corresponding algorithm Simplified Master Theorem

2 Cif BaseCase (I) return Result(I)

3 O(n®)

4 subsolutions = |[]

5 for j = 1..a T(n) € < ©(n®logn)

6 let s = subproblem of size n/b

7 subsolutions[j] = DnC algo(s) ()(7vy)

8

9 solution = combine in n"y time h —1

0 return solution wnere x = logy a.

'—'i

28



DERIVING THE SIMPLIFIED MASTER THEOREM

T(1)=d; T(n) =aT (E) +0nY)wherea>1b=>2andn=»1

1 node
Problem size n

a hodes

problem size %

a? nodes
Problem size %

a’ nodes
prob size % =1

a

(E) (b) (b)

LvlO = 1cn?Y
Lvl 1= ac (%)y

Lvl 2= a?c (%)y

: y
= aic (2
Lvll—ac(bi)

Lvlj = a/d

Sum over all levels we get T(n) = da’ + Z{:g ca

i (n)”
bi

Let’s rearrange fhis intfo a geometric sequence ang solve



REARRANGING

y _
T(n) = da’ + 571 cat (2) Letx = log, @
x relates # of subproblems to their size

J i_n
=da’ + Zl 0 ¢4 (bi)’ Rearranging we have b* = a
] . nY b*
— daf + Z —0 ca‘ ) So T(n) - daf + cn? Z (by)
J- a’ = dal + cn¥ Y2 (b* V)
=dal + Y-, cn? oY) 2i=o( )

Also da/ = d(b¥) = d(b7)"

i
— d ] + .] y . 1 « o e
a Z =0 CTL (by) Since n = b’ this IS JUST dn*

a\! _ X J=1 g x—y\i
= da/ +cn? 35 () So T(n) = dn* + cn? Y)_3 (b*7)

and we can simplify: let r = b*™Y

30



SOLVING THE GEOMETRIC SEQ
T(n) =dn”* +cn3’ZJ_ rt where r = b*77

frj

’r'_

Geo. Seq. formula: Y/_ ari ={ ja € 0(j)
gl ~ € 0(1)

\
So different solutions depending on r

Casel:. r=bp*7r>1 S x—y>0
Case2: r=»b*""7Y=1 & x—y=0
Cased: 0<r=»prr<1 e x-y<o0

€ G)(rf)

ifr>1
ifr=1
fo<r<i1
& x>y
S x=Yy
S x<Yy

31



SOLVING THE GEOMEIRIC SEQ

( - .
arj 1E®(r1) ifr>1
r—1
Formula: Y- ari ={ ja € 0()) ifr=1
klﬂeau) ifo<r<1
Casel:. r=»pr*7r>1 & x—y>0 S x>y

T(n) =dn”* +cn3’Z] Or € dn* +cn3’@(r’)

T(Tl) = @(nx 4 ny,,,.j) — @(nx + nY(bx—Y)j) —N0 (Tlx + n)’(bj)X—ZV)

Recall b/ = n,so T(n) € O(n* + n¥n*Y) = O(n* + nY**7)

SO0 T(n) € O(n")

32



SOLVING THE GEOMEIRIC SEQ

a2 leo(r)  ifr>1
. _ r-1
FormuIO:Z{;g art =4 ja € 0(j) ifr=1
k11’”]e(~)(1) if0<r<1
Case2: r=bp"7r=1 & x—y=0 & x=y

T(n) =dn* + cnyZ] Or € dn* + cn?0(j)

T(n) e O(n* +jnY) = 0(n* + jn*) sincex =y

Recall b/ = n, sology, b’ = log, n. This means j € @(log n).
SoT(n) =0(n* +n*logn) = O(n*logn)

33



SOLVING THE GEOMEIRIC SEQ
( rJ—

— ~eo(r) ifr>1
FormuIO:Z{;g ar' =< ja € 0(j) ifr=1
1”e@u) if0<r<1

4
Cased: 0<r=»r"r7<1 & x—-y<0 & x<y

T(n) =dn* + cnyZ] Or € dn* + cn¥0(1)
T(n) € O(n* +nY)
Since x < y, we simply have T(n) € O(n?Y)

34



MASTER THEOREM FOR RECURRENCES

Simplified version

Consider recurrence:
T(n) =aT (%) +0(nY)wherea=>1b=>2andn="1
And let x = log, a.

O(n") ity <@
T(n) € { O(n®logn) ify==x

O(nY) ify >

35



SOME BONUS INTUITION FOR R CASES

Recall: T(n) = dn* + cn” Z{:gri where r = p*¥
x =logpa i.€.108sybproblem size |SUbproblems|

case r y,x  complexity of T(n)

heavy leaves »r>1 y<u I'(n) € on®)
balanced pe=N =t A (IR e O (1t logi)
heavy top r<1 y>ua T'(n) € O(nY)

means that the value of the recursion tree is dominated by
the values of the leaf nodes.

means that the values of the levels of the recursion tree are
constant (except for the last level).

means that the value of the recursion tree is dominated by the
value of the root node.




WORKED EXAMPLES

Recall: simplified master theorem

Suppose that a > 1 and b > 1. Consider the recurrence

T(n) =aT (%) + ©(nY), wheren is a power of b.

Denote x = log, a. Then

O(n?) ify <ax
T(n) € { O(n%logn) ify==x
O(nY) ify >a.

Questions: o0=2 b=2 y=¢ x=¢
which 0 function¢

O(n* logn) = @(nlogn)
T(n) =3T(n/2)+ cn.
a=3; b=2; y=1; x=log,3
0(n¥) = O(n'°823)
T(n)=4T(n/2)+cn.

a=4; b=2; y=1; x=log,4
O(n¥)= G)(nz)

x=1

O(n¥) = 0(n3/?)

37



MASTER THEOREM WHEN b/~ < n < b’

Bonus slide,

n/b is not always an integer! for you at home

floors/ceilings are hard
not a geometric sequence

Suppose we get a big-O bound for b/~ < n < b/
by instead considering the larger problem size b’

0 ((v))") ify < x
So T(n) < T(b’) €4 0((b’)" logh’) ify =x
0

(
\ ((bj)y) ify >x

38



MASTER THEOREM WHEN b/~ < n < b’

o ((v))") ify <X | foryos ot home
T(n) <T(b’) €4 0((b/)" logh’) ify =x
k® ((bj)y) ify >x

Observation: b/ < bn since n is between b/~ and b/

r@((bn)x) ify <x
SoT(n) < T(bj) € < @((bn)x log bn) ify=x
K@((bn)y) ify > x

39



MASTER THEOREM WHEN b/~ < n < b’

(0((bn)*)

ify<x

T(n) €4 @((bn)xlog bn) ify=x

()

ify>x

Bonus slide,
for you at home

Case 1l (y<x): (bn)* =b*n* and b* is a constant

SoT(n) € 0(n%)

Case2 (y=x): (bn)*logbn =b*n*(logh + logn)
T(bn) € ©(b*n*logb + b*n*logn) = O(n* + n*logn)

SoT(n) € 0(n*logn)

Case3 (y>x): (bn)Y =b¥nY

SoT(n) e 0(n”)

Can tackle Q
similarly to get 6

40




Example recurrence:

GENERAL MASTER THEOREM () — BT(r/4) + 1o

Suppose that a > 1 and b > 1. Consider the recurrence

Arbitrary
function of n
(not just cn?¥)

T(n)=a (%) + f(n),

where n is a power of b. Denote x = log, a. Then

O(n") if f(n) € O(n*¢) for some e > 0
O(n*logn) if f(n) € O(n")
O(f(n)) if f(n)/n*"¢ is an increasing function of n

T'(n) €

for some € > 0.

Must reason about
relationship between
f(n) and n*

41




REVISITING THE RECURSION TREE METHOD

Some recurrences with complex f(n) functions (such as f(n) =
log n) can still be solved “by hand”

Example:Letn=2); T(1)=1; Tn) =2T (g) +nlogn

level # nodes value at each node value of the level

Note

logon =j
So

j27 =nlog,n

And

. n. n
| — J-1 — —
(G—1)2 2log2

42



REVISITING THE RECURSION TREE METHOD

Recal:n=2: T(1)=1; T(n) = 2T (g) +nlogn

value of the level

Since n = 27, we have j = log,n and T'(n) € O(n(logn)?):

43



