
CS 341: ALGORITHMS
Lecture 2: divide & conquer I

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

DIVIDE AND CONQUER
Notable algorithms: mergesort, quicksort, binary search, …

2

DIVIDE-AND-CONQUER DESIGN STRATEGY

• divide: Given a problem instance 𝑰,
construct one or more smaller problem instances 𝑰𝟏, … , 𝑰𝒂

• These are called subproblems

• Usually, want subproblems to be small
compared to the size of 𝑰 (e.g., half the size)

• conquer: For 𝟏 ≤ 𝒋 ≤ 𝒂, solve instance 𝑰𝒋 recursively,
obtaining solutions 𝑺𝟏, … , 𝑺𝒂

• combine: Given solutions 𝑺𝟏, … , 𝑺𝒂,
use an appropriate combining function to find
the solution 𝑺 to the problem instance 𝑰

• i.e., 𝑺 = Combine(𝑺𝟏, … , 𝑺𝒂).

3

D&C PROTO-ALGORITHM

4

CORRECTNESS

• Prove base cases are correct

• Inductively assume subproblems are solved correctly

• Show they are correctly assembled into a solution

5

RUNTIME/SPACE COMPLEXITY?

• Techniques covered in this lecture

• Model complexities using recurrence relations

• Solve with substitution, master theorem, etc.

6

WORKED EXAMPLE: DESIGN OF MERGESORT

7

105 7 13 8 14 1 19 11 4 10 98 16 31 5 21 12

105 7 13 8 14 1 19 11 4 10 98 16 31 5 21 12

105 7 13 8 14 1 19 11

14 1 19 11105 7 13 8

7105 13 8 14 1 19 11

4 10 98 16 31 5 21 12

4 10 98 16 31 5 21 12

4 10 98 16 31 5 21 12

DIVIDE

8

1 4 5 7 8 10 11 12 13 14 19 21 31 96 98 105

1 7 8 11 13 14 19 105 4 5 10 12 21 31 96 98

7 8 13 105 1 11 14 19

1 14 11 197 105 8 13

7105 13 8 14 1 19 11

4 10 96 98 5 12 21 31

4 10 16 98 5 31 12 21

4 10 98 16 31 5 21 12

MERGE: CONQUER AND COMBINE

9

44 54 5 104 5 10 124 5 10 12 214 5 10 12 21 314 5 10 12 21 31 964 5 10 12 21 31 96 98

4 10 96 98 5 12 21 31

L R

O

MERGE SIMULATION

10

PSEUDOCODE FOR MERGESORT

11

PSEUDOCODE FOR MERGE

4

4 10 96 98 5 12 21 31

iL < nL iR < nR

aL aR

aOut

4 5 10 12 21 31

4 10 96 98 5 12 21 31

iL < nL iR ≥ nR

aL aR

aOut

There are still elements

left in both arrays

Right array is out of elements

Left array is out of elements

12

ANALYSIS OF MERGESORT

O(1)

O(1)

O(n) or O(1)

??????

So, MergeSort(A) takes O(n)

time, plus the time for its

two recursive calls!

How can we analyze this

recursive program structure?O(n) or O(1)

O(n)

13

RECURRENCE RELATIONS
A crucial analysis tool for recursive algorithms

𝑯𝒖𝒍𝒌(𝒏) = 𝑭𝒂𝒄𝒆 – 𝑪𝒉𝒊𝒏 + 𝑯𝒖𝒍𝒌(𝒏 − 𝟏)

14

RECURRENCE RELATIONS

15

MATHEMATICALLY EXPRESSING

THE COMPLEXITY OF MERGESORT

𝑻(𝒏) is a function of 𝑻(…) so

𝑇 is a recurrence relation

How can we compute/solve for 𝑇(𝑛)?

To make this easier,

assume 𝑛 = 2𝑘,

which lets us ignore

floors/ceilings

16

Θ 1

RECURSION TREE METHOD
Evaluating recurrences with 𝑻(𝒏/𝒄) terms

𝑻(𝒏)

𝑻(𝒏/𝟐) 𝑻(𝒏/𝟐)

𝑻(𝒏/𝟒) 𝑻(𝒏/𝟒)

𝑻(𝒏/𝟖) …

…

𝑻(𝒏/𝟖)

𝑻(𝒏)

𝑻(𝒏 − 𝟏)

𝑻(𝒏 − 𝟐)

…

Recursion treeCompare vs:

17

msort(n)

msort(n/2) msort(n/2)

msort(n/4) msort(n/4) msort(n/4) msort(n/4)

msort(1) msort(1) msort(1) msort(1)

cn

2(cn/2)

4(cn/4)

n(c)

Total = 𝑐𝑛 ∗ #levels

Total = 𝑐𝑛 log2(𝑛)

RECURSION
TREE METHOD

= cn

= cn

= cn

= cn

…
… …

Level # of nodes runtime per node total runtime for level

0 1 𝑐𝑛 𝑐𝑛

1 2 𝑐(𝑛/2) 2𝑐 𝑛/2 = 𝑐𝑛

2 4 𝑐(𝑛/4) 4𝑐 𝑛/4 = 𝑐𝑛

… … … …

log 𝑛 𝑛 𝑐 𝑛/𝑛 = 𝑐 𝑛𝑐 𝑛/𝑛 = 𝑐𝑛

So, mergesort has

runtime 𝑶(𝒏 𝐥𝐨𝐠 𝒏)

Can also compute

using a table…
18

RECURSION TREE METHOD FORMALIZED
Sample recurrence for

two recursive calls on

problem size 𝒏/𝟐

Step 2

Step 3

Step 4

Step 1

19

GUESS-AND-CHECK METHOD

• Suppose we have the following recurrence

𝑇 0 = 4 ; 𝑇 𝑛 = 𝑇 𝑛 − 1 + 6𝑛 − 5

• Guess the form of the solution any way you like

• My approach: the substitution method

• Recursively substitute the formula into itself

• Try to identify patterns to guess the final closed form

• Prove that the guess was correct

20

SUBSTITUTION METHOD: WORKED EXAMPLE

Recurrence: 𝑇 0 = 4 ; 𝑇 𝑛 = 𝑇 𝑛 − 1 + 6𝑛 − 5

• 𝑇 𝑛 − 1 = 𝑇 𝑛 − 1 − 1 + 6(𝑛 − 1) − 5

• 𝑇 𝑛 = 𝑇 𝑛 − 2 + 6 𝑛 − 1 − 5 + 6𝑛 − 5 (substitute)

• = 𝑇 𝑛 − 𝟐 + 𝟐 6𝑛 − 5 − 𝟔 (try to preserve structure)

• = 𝑇 𝑛 − 3 + 6 𝑛 − 2 − 5 + 2 6𝑛 − 5 − 6 (substitute)

• = 𝑇 𝑛 − 𝟑 + 𝟑 6𝑛 − 5 − 𝟔(𝟏 + 𝟐)

• … identify patterns and guess what happens in the limit

• = 𝑇 𝟎 + 𝒏 6𝑛 − 5 − 𝟔 𝟏 + 𝟐 + 𝟑 + ⋯ + 𝒏 − 𝟏 = 𝒈𝒖𝒆𝒔𝒔(𝒏)

Compare: new terms?

+(6n-5) -6

new terms? +(6n-5) -2(6)

21

• 𝑔𝑢𝑒𝑠𝑠 𝑛 = 𝑇 𝟎 + 𝒏 6𝑛 − 5 − 𝟔 𝟏 + 𝟐 + 𝟑 + ⋯ + 𝒏 − 𝟏

• Use 1 + 2 + ⋯ + 𝑛 − 1 =
𝑛 𝑛−1

2

• 𝑔𝑢𝑒𝑠𝑠 𝑛 = 4 + 6𝑛2 − 5𝑛 − 6𝑛(𝑛 − 1)/2 (simplify)

• = 3𝑛2 − 2𝑛 + 4

• Are we done?

• The form of 𝑔𝑢𝑒𝑠𝑠 𝑛 was an educated guess.

• To be sure, we must prove it correct using induction

22

• Recall: 𝑻 𝟎 = 𝟒 ; 𝑻 𝒏 = 𝑻 𝒏 − 𝟏 + 𝟔𝒏 − 𝟓 ; 𝒈𝒖𝒆𝒔𝒔 𝒏 = 𝟑𝒏𝟐 − 𝟐𝒏 + 𝟒

• Want to prove: 𝒈𝒖𝒆𝒔𝒔 𝒏 = 𝑻 𝒏 for all 𝒏

• Base case: 𝑔𝑢𝑒𝑠𝑠 0 = 3 0 2 − 2 0 + 4 = 𝑻 𝟎
PROOF

23

• Recall: 𝑻 𝟎 = 𝟒 ; 𝑻 𝒏 = 𝑻 𝒏 − 𝟏 + 𝟔𝒏 − 𝟓 ; 𝒈𝒖𝒆𝒔𝒔 𝒏 = 𝟑𝒏𝟐 − 𝟐𝒏 + 𝟒

• Want to prove: 𝒈𝒖𝒆𝒔𝒔 𝒏 = 𝑻 𝒏 for all 𝒏

• Inductive case: suppose 𝑔𝑢𝑒𝑠𝑠 n = 𝑇 𝑛 for 𝑛 ≥ 0,

 show 𝑔𝑢𝑒𝑠𝑠 n + 1 = 𝑇 𝑛 + 1 .

• 𝑻 𝒏 + 𝟏 = 𝑇 𝑛 + 6(𝑛 + 1) − 5 (by definition)

• = 𝒈𝒖𝒆𝒔𝒔 𝒏 + 6 𝑛 + 1 − 5 (by inductive hypothesis)

• = 𝟑𝒏𝟐 − 𝟐𝒏 + 𝟒 +6 𝑛 + 1 − 5 (substitute)

• = 3𝑛2 + 4𝑛 + 5 (simplify)

• 𝒈𝒖𝒆𝒔𝒔 𝒏 + 𝟏 = 3 𝑛 + 1 2 − 2 𝑛 + 1 + 4 (by definition)

• = 3𝑛2 + 4𝑛 + 5 = 𝑻 𝒏 + 𝟏 (simplify)

PROOF

24

ANOTHER APPROACH

• Suppose you look for a while at the previous recurrence:

• 𝑇 0 = 4 ; 𝑇 𝑛 = 𝑇 𝑛 − 1 + 6𝑛 − 5

• With some experience, you might just guess it’s quadratic

• If you’re right, it should have the form:

• 𝒂𝒏𝟐 + 𝒃𝒏 + 𝒄 for some unknown constants a, b, c

• So, just carry the unknown constants into the proof!

• You can then determine what the constants must be

for the proof to work out

25

• 𝑻 𝟎 = 𝟒 ; 𝑻 𝒏 = 𝑻 𝒏 − 𝟏 + 𝟔𝒏 − 𝟓 ; 𝒈𝒖𝒆𝒔𝒔 𝒏 = 𝒂𝒏𝟐 + 𝒃𝒏 + 𝒄

• Want to prove: 𝒈𝒖𝒆𝒔𝒔 𝒏 = 𝑻 𝒏 for all 𝒏

• Base case: 𝑔𝑢𝑒𝑠𝑠 0 = 𝑎 0 2 + 𝑏 0 + 𝑐 = 𝑇 0 = 4

• this holds iff 𝒄 = 𝟒 (𝑎, 𝑏 are not constrained)

• Inductive case: suppose 𝑔𝑢𝑒𝑠𝑠 n = 𝑇 𝑛 for 𝑛 ≥ 0,

 show 𝑔𝑢𝑒𝑠𝑠 n + 1 = 𝑇 𝑛 + 1 .

• 𝑻 𝒏 + 𝟏 = 𝑇 𝑛 + 6(𝑛 + 1) − 5 (by definition)

• = 𝒈𝒖𝒆𝒔𝒔 𝒏 + 6 𝑛 + 1 − 5 (by inductive hypothesis)

• = 𝑎𝑛2 + 𝑏𝑛 + 𝟒 + 6 𝑛 + 1 − 5 (substitute)

• = 𝑎𝑛2 + 𝑏 + 6 𝑛 + 5 (simplify)

26

• Recall: 𝒈𝒖𝒆𝒔𝒔 𝒏 = 𝒂𝒏𝟐 + 𝒃𝒏 + 𝒄 where 𝒄 = 𝟒

• Inductive case: suppose 𝑔𝑢𝑒𝑠𝑠 n = 𝑇 𝑛 for 𝑛 ≥ 0,

 show 𝑔𝑢𝑒𝑠𝑠 n + 1 = 𝑇 𝑛 + 1 .

• 𝑻 𝒏 + 𝟏 = 𝑎𝑛2 + 𝑏 + 6 𝑛 + 5 (continue previous slide)

• 𝒈𝒖𝒆𝒔𝒔 𝒏 + 𝟏 = 𝑎 𝑛 + 1 2 + 𝑏 𝑛 + 1 + 𝟒 (by definition and 𝒄 = 𝟒)

• = 𝑎 𝑛2 + 2𝑛 + 1 + 𝑏𝑛 + 𝑏 + 4 (simplify, and…)

• = 𝑎𝑛2 + 2𝑎 + 𝑏 𝑛 + (𝑎 + 𝑏 + 4) (rearrange polynomial)

• We want this to be equal to 𝑻(𝒏 + 𝟏)

• 𝑎𝑛2 + 2𝑎 + 𝑏 𝑛 + 𝑎 + 𝑏 + 4 = 𝑎𝑛2 + 𝑏 + 6 𝑛 + 5

• equivalent to 2𝑎 + 𝑏 = 𝑏 + 6 and 𝑎 + 𝑏 + 4 = 5

• first implies 𝒂 = 𝟑 plug a into second to get 𝑏 = 5 − 4 − 3 = −𝟐

So, inductive

hypothesis is correct

for 𝐚 = 𝟑, 𝐛 = −𝟐, 𝐜 = 𝟒

27

MASTER THEOREM FOR RECURRENCES
• Provides a formula for solving many recurrence relations

• We start with a simplified version

• Consider recurrence: 𝑇 1 = 𝑑 ; 𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ Θ 𝑛𝑦

where 𝑎 ≥ 1, 𝑏 ≥ 2 and 𝑛 is a power of 𝑏 (i.e., 𝑛 = 𝑏𝑗 for integer 𝑗)

Example corresponding algorithm

28

Simplified Master Theorem

where 𝑥 = log𝑏 𝑎.

DERIVING THE SIMPLIFIED MASTER THEOREM
𝑇 1 = 𝑑 ; 𝑇 𝑛 = 𝑎𝑇

𝑛

𝑏
+ Θ 𝑛𝑦 where 𝑎 ≥ 1, 𝑏 ≥ 2 and 𝒏 = 𝒃𝒋

𝑐𝑛𝑦

𝑐
𝑛

𝑏

𝑦

𝑐
𝑛

𝑏

𝑦

𝑐
𝑛

𝑏

𝑦

𝑐
𝑛

𝑏

𝑦
…

𝑐
𝑛

𝑏2

𝑦

𝑐
𝑛

𝑏2

𝑦
… 𝑐

𝑛

𝑏2

𝑦

𝑐
𝑛

𝑏2

𝑦
…

…

𝑐
𝑛

𝑏2

𝑦

𝑐
𝑛

𝑏2

𝑦
…

Lvl 0 = 1𝑐𝑛𝑦

Lvl 1= 𝑎𝑐
𝑛

𝑏

𝑦

Lvl 2= 𝑎2𝑐
𝑛

𝑏2

𝑦

1 node

Problem size 𝑛

𝑎 nodes

problem size
𝑛

𝑏

𝑎2 nodes

Problem size
𝑛

𝑏2

… … … … … …

𝑎𝑗 nodes

prob size
𝑛

𝑏𝑗 = 1 Lvl 𝑗 = 𝑎𝑗𝑑

Sum over all levels we get 𝑇 𝑛 = 𝑑𝑎𝑗 + σ𝑖=0
𝑗−1

𝑐𝑎𝑖 𝑛

𝑏𝑖

𝑦

Let’s rearrange this into a geometric sequence and solve

𝑑 𝑑 𝑑 𝑑…𝑑 𝑑 𝑑

Lvl 𝑖 = 𝑎𝑖𝑐
𝑛

𝑏𝑖

𝑦

29

REARRANGING

• 𝑇 𝑛 = 𝑑𝑎𝑗 + σ𝑖=0
𝑗−1

𝑐𝑎𝑖 𝑛

𝑏𝑖

𝑦

• = 𝑑𝑎𝑗 + σ𝑖=0
𝑗−1

𝑐𝑎𝑖 𝒏𝒚

𝒃𝒊 𝒚

• = 𝑑𝑎𝑗 + σ𝑖=0
𝑗−1

𝑐𝑎𝑖 𝑛𝑦

𝒃𝒚 𝒊

• = 𝑑𝑎𝑗 + σ𝑖=0
𝑗−1

𝑐𝒏𝒚 𝑎𝑖

𝑏𝑦 𝑖

• = 𝑑𝑎𝑗 + σ𝑖=0
𝑗−1

𝑐𝑛𝑦 𝒂

𝒃𝒚

𝒊

• = 𝑑𝑎𝑗 + 𝑐𝑛𝑦 σ𝑖=0
𝑗−1 𝑎

𝑏𝑦

𝑖

• Let 𝑥 = log𝑏 𝑎

• 𝑥 relates # of subproblems to their size

• Rearranging we have 𝑏𝑥 = 𝑎

• So 𝑇 𝑛 = 𝑑𝑎𝑗 + 𝑐𝑛𝑦 σ𝑖=0
𝑗−1 𝒃𝒙

𝑏𝑦

𝑖

• = 𝑑𝑎𝑗 + 𝑐𝑛𝑦 σ𝑖=0
𝑗−1

𝑏𝑥−𝑦 𝑖

• Also 𝑑𝑎𝑗 = 𝑑 𝑏𝑥 𝑗 = 𝑑 𝑏𝑗 𝑥

• Since 𝑛 = 𝑏𝑗 this is just 𝑑𝑛𝑥

• So 𝑻 𝒏 = 𝒅𝒏𝒙 + 𝒄𝒏𝒚 σ𝒊=𝟎
𝒋−𝟏

𝒃𝒙−𝒚 𝒊

• and we can simplify: let 𝒓 = 𝒃𝒙−𝒚

30

SOLVING THE GEOMETRIC SEQ

• 𝑇 𝑛 = 𝑑𝑛𝑥 + 𝑐𝑛𝑦 σ𝑖=0
𝑗−1

𝑟𝑖 where 𝒓 = 𝒃𝒙−𝒚

• Geo. Seq. formula: σ𝑖=0
𝑗−1

𝑎𝑟𝑖 =

𝑎
𝑟𝑗−1

𝑟−1
∈ Θ 𝑟𝑗 if 𝑟 > 1

𝑗𝑎 ∈ Θ 𝑗 if r = 1

𝑎
1−𝑟𝑗

1−𝑟
∈ Θ 1 if 0 < 𝑟 < 1

• So different solutions depending on 𝒓

• Case 1: 𝒓 = 𝒃𝒙−𝒚 > 𝟏 ⇔ 𝒙 − 𝒚 > 𝟎 ⇔ 𝒙 > 𝒚

• Case 2: 𝒓 = 𝒃𝒙−𝒚 = 𝟏 ⇔ 𝒙 − 𝒚 = 𝟎 ⇔ 𝒙 = 𝒚

• Case 3: 𝟎 < 𝒓 = 𝒃𝒙−𝒚 < 𝟏 ⇔ 𝒙 − 𝒚 < 𝟎 ⇔ 𝒙 < 𝒚

31

SOLVING THE GEOMETRIC SEQ

• Formula: σ𝑖=0
𝑗−1

𝑎𝑟𝑖 =

𝑎
𝑟𝑗−1

𝑟−1
∈ Θ 𝑟𝑗 if 𝑟 > 1

𝑗𝑎 ∈ Θ 𝑗 if r = 1

𝑎
1−𝑟𝑗

1−𝑟
∈ Θ 1 if 0 < 𝑟 < 1

• Case 1: 𝒓 = 𝒃𝒙−𝒚 > 𝟏 ⇔ 𝒙 − 𝒚 > 𝟎 ⇔ 𝒙 > 𝒚

• 𝑇 𝑛 = 𝑑𝑛𝑥 + 𝑐𝑛𝑦 σ𝒊=𝟎
𝒋−𝟏

𝒓𝒊 ∈ 𝑑𝑛𝑥 + 𝑐𝑛𝑦𝚯 𝒓𝒋

• 𝑇 𝑛 ∈ Θ 𝑛𝑥 + 𝑛𝑦𝑟𝑗 = Θ 𝑛𝑥 + 𝑛𝑦 𝑏𝑥−𝑦 𝑗 = Θ 𝑛𝑥 + 𝑛𝑦 𝑏𝑗 𝑥−𝑦

• Recall 𝑏𝑗 = 𝑛, so 𝑇 𝑛 ∈ Θ 𝑛𝑥 + 𝑛𝑦𝑛𝑥−𝑦 = Θ 𝑛𝑥 + 𝑛𝑦+𝑥−𝑦

• So 𝑇 𝑛 ∈ 𝚯 𝒏𝒙

32

SOLVING THE GEOMETRIC SEQ

• Formula: σ𝑖=0
𝑗−1

𝑎𝑟𝑖 =

𝑎
𝑟𝑗−1

𝑟−1
∈ Θ 𝑟𝑗 if 𝑟 > 1

𝑗𝑎 ∈ Θ 𝑗 if r = 1

𝑎
1−𝑟𝑗

1−𝑟
∈ Θ 1 if 0 < 𝑟 < 1

• Case 2: 𝒓 = 𝒃𝒙−𝒚 = 𝟏 ⇔ 𝒙 − 𝒚 = 𝟎 ⇔ 𝒙 = 𝒚

• 𝑇 𝑛 = 𝑑𝑛𝑥 + 𝑐𝑛𝑦 σ𝒊=𝟎
𝒋−𝟏

𝒓𝒊 ∈ 𝑑𝑛𝑥 + 𝑐𝑛𝑦𝚯 𝒋

• 𝑇 𝑛 ∈ Θ 𝑛𝑥 + 𝑗𝑛𝑦 = Θ(𝑛𝑥 + 𝑗𝑛𝑥) since 𝑥 = 𝑦

• Recall 𝑏𝑗 = 𝑛, so log𝑏 𝑏𝑗 = log𝑏 𝑛. This means 𝒋 ∈ 𝚯(𝐥𝐨𝐠 𝒏).

• So 𝑇 𝑛 = Θ 𝑛𝑥 + 𝑛𝑥 log 𝑛 = 𝚯 𝒏𝒙 𝐥𝐨𝐠 𝒏

33

SOLVING THE GEOMETRIC SEQ

• Formula: σ𝑖=0
𝑗−1

𝑎𝑟𝑖 =

𝑎
𝑟𝑗−1

𝑟−1
∈ Θ 𝑟𝑗 if 𝑟 > 1

𝑗𝑎 ∈ Θ 𝑗 if r = 1

𝑎
1−𝑟𝑗

1−𝑟
∈ Θ 1 if 0 < 𝑟 < 1

• Case 3: 𝟎 < 𝒓 = 𝒃𝒙−𝒚 < 𝟏 ⇔ 𝒙 − 𝒚 < 𝟎 ⇔ 𝒙 < 𝒚

• 𝑇 𝑛 = 𝑑𝑛𝑥 + 𝑐𝑛𝑦 σ𝒊=𝟎
𝒋−𝟏

𝒓𝒊 ∈ 𝑑𝑛𝑥 + 𝑐𝑛𝑦𝚯 𝟏

• 𝑇 𝑛 ∈ Θ 𝑛𝑥 + 𝑛𝑦

• Since 𝑥 < 𝑦, we simply have 𝑻 𝒏 ∈ 𝚯 𝒏𝒚

34

MASTER THEOREM FOR RECURRENCES

• Simplified version

Consider recurrence:

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ Θ 𝑛𝑦 where 𝑎 ≥ 1, 𝑏 ≥ 2 and 𝒏 = 𝒃𝒋

And let 𝒙 = 𝐥𝐨𝐠𝒃 𝒂.

35

SOME BONUS INTUITION FOR R CASES
Recall: 𝑇 𝑛 = 𝑑𝑛𝑥 + 𝑐𝑛𝑦 σ𝑖=0

𝑗−1
𝑟𝑖 where 𝒓 = 𝒃𝒙−𝒚

𝑥 = log𝑏 𝑎 i.e. logsubproblem size |subproblems|

36

WORKED EXAMPLES

Recall: simplified master theorem
a=2; b=2; y=1; x=1

Questions: a=? b=? y=? x=?

 which Θ function?

Θ 𝑛𝑥 log 𝑛 = Θ 𝑛 log 𝑛

a=3; b=2; y=1; x=log2 3

Θ 𝑛𝑥 = Θ 𝑛log2 3

a=4; b=2; y=1; x=log2 4

Θ 𝑛𝑥 = Θ 𝑛2

a=2; b=2; y=3/2; x=1

Θ 𝑛𝑦 = Θ 𝑛3/2

37

MASTER THEOREM WHEN 𝑏𝑗−1 < 𝑛 < 𝑏𝑗

• 𝒏/𝒃 is not always an integer!

• floors/ceilings are hard

• not a geometric sequence

• Suppose we get a big-O bound for 𝑏𝑗−1 < 𝑛 < 𝑏𝑗

by instead considering the larger problem size 𝒃𝒋

• So 𝑇 𝑛 ≤ 𝑇 𝑏𝑗 ∈

Θ 𝑏𝑗 𝑥
 if 𝑦 < 𝑥

Θ 𝑏𝑗 𝑥
log 𝑏𝑗 if 𝑦 = 𝑥

Θ 𝑏𝑗 𝑦
 if 𝑦 > 𝑥

38

Bonus slide,

for you at home

• 𝑇 𝑛 ≤ 𝑇 𝑏𝑗 ∈

Θ 𝑏𝑗 𝑥
 if 𝑦 < 𝑥

Θ 𝑏𝑗 𝑥
log 𝑏𝑗 if 𝑦 = 𝑥

Θ 𝑏𝑗 𝑦
 if 𝑦 > 𝑥

• Observation: 𝒃𝒋 < 𝒃𝒏 since 𝑛 is between 𝑏𝑗−1 and 𝑏𝑗

• So 𝑇 𝑛 ≤ 𝑇 𝑏𝑗 ∈

Θ 𝑏𝑛 𝑥 if 𝑦 < 𝑥

Θ 𝑏𝑛 𝑥 log 𝑏𝑛 if 𝑦 = 𝑥

Θ 𝑏𝑛 𝑦 if 𝑦 > 𝑥

MASTER THEOREM WHEN 𝑏𝑗−1 < 𝑛 < 𝑏𝑗

39

Bonus slide,

for you at home

• 𝑇 𝑛 ∈

Θ 𝑏𝑛 𝑥 if 𝑦 < 𝑥

Θ 𝑏𝑛 𝑥 log 𝑏𝑛 if 𝑦 = 𝑥

Θ 𝑏𝑛 𝑦 if 𝑦 > 𝑥

• Case 1 (𝒚 < 𝒙): 𝑏𝑛 𝑥 = 𝒃𝒙𝑛𝑥 and 𝒃𝒙 is a constant

• So 𝑇 𝑛 ∈ 𝑂(𝑛𝑥)

• Case 2 (𝒚 = 𝒙): 𝑏𝑛 𝑥 log 𝑏𝑛 = 𝑏𝑥𝑛𝑥 log 𝑏 + log 𝑛

• 𝑇 𝑏𝑛 ∈ Θ 𝒃𝒙𝑛𝑥 𝐥𝐨𝐠 𝒃 + 𝒃𝒙𝑛𝑥 log 𝑛 = Θ 𝑛𝑥 + 𝑛𝑥 log 𝑛

• So 𝑇 𝑛 ∈ 𝑂(𝑛𝑥 log 𝑛)

• Case 3 (𝒚 > 𝒙): 𝑏𝑛 𝑦 = 𝒃𝒚𝑛𝑦

• So 𝑇 𝑛 ∈ 𝑂(𝑛𝑦)

Can tackle Ω

similarly to get 𝜃

MASTER THEOREM WHEN 𝑏𝑗−1 < 𝑛 < 𝑏𝑗

40

Bonus slide,

for you at home

GENERAL MASTER THEOREM

Arbitrary

function of 𝒏
(not just 𝑐𝑛𝑦)

Must reason about

relationship between

𝑓(𝑛) and 𝑛𝑥

Example recurrence:

41

REVISITING THE RECURSION TREE METHOD

• Some recurrences with complex f(n) functions (such as f(n) =

log n) can still be solved “by hand”

• Example: Let n = 2j ; 𝑇 1 = 1 ; 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 𝑙𝑜𝑔 𝑛

Note

log2 𝑛 = 𝑗
So

𝑗2𝑗 = 𝑛 log2 𝑛
And

𝑗 − 1 2𝑗−1 =
𝑛

2
log

𝑛

2

42

REVISITING THE RECURSION TREE METHOD

• Recall: n = 2j ; 𝑇 1 = 1 ; 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 𝑙𝑜𝑔 𝑛

43

