CS 341: ALGORITHMS

Lecture 20: intractability Il - complexity class NP

Readings: see website

Trevor Brown

hittps://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

THIS TIME

* Finishing TSP reductions
« Complexity class NP
» Oracles, certificates, polytime veritfication algorithms

RECALL

e So far we know

» TSP-Dec <% TSP-
Optimal Value

» TSP-Dec <% TSP-
Optimization

* In progress

« TSP-Optimal Value
<L TSP-Dec

Travelling Salesperson Problems

Problem 7.5

TSP-Optimization

Instance: A graph G and edge weights w : E — 7.

Find: A hamiltonian cycle H in G such that w(H) =) . w(e) is
minimized.

Problem 7.6

TSP-Optimal Value

Instance: A graph G and edge weights w : & — 7.
Find: The minimum T such that there exists a hamiltonian cycle H in G
with w(H) =T.

Problem 7.7

TSP-Decision
Instance: A graph G, edge weights w : E — Z*, and a target T.
Question: Does there exist a hamiltonian cycle H in G with w(H) < T'?

Size(I) = |V| + z(log w(e) +1+loglV|+ 1)

1 eeE ' [
For all edges

N 00 .0 0.0 0.0 0.0 0.0 000 0 000 000000000t s oo it ense oo 'o%%

TSP- Optlmal Value <T TSP-Dec

Algorithm: TSP-OptimalValue-Solver(G, w)
external TSP-Dec-Solver

hi Y e w(e) ——NOMEDN
lo <0 j

if not TSP-Dec-Solver(G,w, hi) then return (oco)

. hi+lo —
mad [er J

if TSP-Dec-Solver(G,w, mid)
then hi < mid —ow
else lo < mid + 1 _
return (hi)

do

COMPARING T(I) AND Size(D)

* T(D) € O(|E| +log 2 epw(e))

e Size(I) =|V|+ X.ep(logw(e)+ 1+ log|V]|+ 1)
= V| + Zeeg(logw(e) + 1) + Zocp(loglV] + 1)
= V] + Xoeg(logw(e) + 1) + Z.ce(log|V]) + |E]

« Want to show T(I) € 0(Size(I)¢) for some constant ¢ (we show c=1)
O(|E| +logYecpw(e)) S O(IV] + Zeeg(logw(e) + 1) + Zecp log|V] + |EI)
© 0(logYeepw(e)) € O(|V| + Z.cp(logw(e) + 1) + Zeep log|V|)

How to compare log) .., w(e) and X, ;(logw(e) + 1)?

COMPARING T(I) AND Size(D)

 How to compare log)...pw(e) and > __, (logw(e) + 1)?

o Y. cp(logw(e) +1) = (logw(e;) + 1)+ Hogwle;) + 1)+ -+ (log (W(e|E|)) + 1)

« Can we combine these tferms into one log using logx + logy = log xy<¢

o Y.cp(logw(e) +1) = (logw(ey) +log2) + + -+ + (log (W(e|E|)) + log 2)

o« Z.cp(logw(e) +1) =log2w(e;) 2w(e,) ... 2w(ejg) = log[lecr 2w(e)
« So how to compare log[].cx2w(e) and log). ..pw(e)?

« All w(e) are positive integers, SO [l.cg2w(e) = Y. .cpw(e)

« Since log is increasing on Z*, log [1.cg 2w(e) = log) .cpw(e)

COMPARING T(I) AND Size(I)

 We in fact show T(I) € O(Size(1))
O(log ¥ eep w(e)) € O(IV] + 2. cp(logw(e) + 1) + Zcg log|V])

How to compare log)...pw(e) and Z, . (logw(e) + 1)?

We just saw Z . cp(logw(e) + 1) = log[l.cx2w(e) = log). .c.pw(e)

So T(I) € 0(Size(I)°) where ¢ = 1 So this reduction has runtime that is

polynomial in the input size!

JOOOOOOOOOOOOUOOOOO OO OO U U U U UOUDUODOUOUOUOUOU0
N Yo~ +i- . v . ‘; o %
o8008 00 -&é*.h,‘. 8000800 AP A e PSP I FL I I IC I I M IC ML ML I I I I I, MM Q.Q-é“_‘

IOOOOOOH U

SCICICOC S0 ..
S L y .‘ ,.-..............0....
"‘."“}' "'?‘..’........‘.‘..

TSP-Optimal Value <% TSP-Dec

-------------------- e AR
ooooooooooooooooooooooooooo * o’o‘o’o’o’o‘o’o’t’i’b‘»é OO
e ae e -'o...o’o.o.o.o.o.o‘o'o‘.'o‘o‘o’.‘.‘i‘.’»‘ 3L
.o.ococo.o.o..oo.o.o.d:.,.—,d:&:ﬁ_. X

Algorithm: TSP-OptimalValue-Solver(G, w)
external TSP-Dec-Solver
hi < ZeEE’ w(e)
lo+ 0
if not TSP-Dec-Solver(G,w, hi) then return (o)
while hi > lo
(mid « [k
if TSP-Dec-Solver(G,w, mid)
then hi < mad
| else lo < mid +1
return (hi)

do {

We have therefore shown:

Algorithm: TSP-OptimalValue-Solver(G, w)

TSP-Optimal Value is polytime
external TSP-Dec-Solver reducible to TSP-Dec

hi < ZeEE’ w(e)

lo <0

if not TSP-Dec-Solver(G,w, hi) then return (co)

while hi > lo

(mid ¢ | gl

if TSP-Dec-Solver(G,w, mid)
then hi < mad

| else lo + mid + 1

return (A7)

do ¢

In fact, TSP-OptimalValue-Solver remains
polytime even if the implementation of the
oracle runs in polytime instead of O(1)! (bonus slides)

10

PROVING REDUCTIONS CORRECT

* In more complex reductions where we transform the input
before calling the oracle, we will need a more complex proof:

« (A) If there is a(n optimal) solution in the Input, our
transformation will preserve that solution so the oracle can find

1T, and

« (B) Our transformation doesn’t intfroduce new solutions that are
not present in the original iInput

e (l.e., If we find a solufion in the transformed input, there was
a corresponding solution in the original inpuf)

More on this later...

11

| N P UT S |Z E C H EAT S H E ET Exponentially larger than

optimal representation!

Perfectly fine ‘ Input I Examples of BAD
choices of Size(I)

choices of Size(I)

To write down x=1,
111 O"(s need log(1)+1=1 bit. KL
08\ T & For x=2 this is 2 bits.
(can simplify to For x=4. 3 bits. Graph (V,E)
log(x) + 1 or log x)

Graph (V,E) V| or) :
|E| or Pick any expression that A[l..n] of int

V|2 or makes your analysis easy

with weights W: |V| + |E| or
Yecr(log(w(e)) + 1) or Pseudo-polynomial ~= no exponentiation
Yuvev log(w(u,v)) + 1) or of non-constant terms
any sum of terms above
A[1..n] of int n or Technically any pseudo-polynomial
Y;(log(A[i]) + 1) combination of these tferms is fine.
n X 1 matrix m n2 or For example, the following is fine:
Y (log(mi,-) +1) (IEI*° +V|?) 'ZeeE(lOg(W(e)) +1)

12

» SO far we know
» TSP-Dec <f TSP-Optimal Value
» TSP-Dec <% TSP-Optimization
» TSP-Optimal Value <% TSP-Dec
» Let’s show

» TSP-Optimization <% TSP-Dec

13

WHAT ABOUT REDUCING
TSP-OPTIMIZATION TO TSP-DEC¥

Problem 7.5

TSP-Optimization

Instance: A graph G and edge weights w : E — ZT.

Find: A hamiltonian cycle H in G such that w(H) =) .y w(e) is

minimized.
Need fo return the actual We already know how to
minimum Hamiltfonian Cycle! get the weight T* of the
Problem 7.7 minimum HC...
TSP-Decision
Instance: A graph G, edge weights w : E — 7™, and a target T. ldea: Use T* along with calls

Question: Does there exist a hamiltonian cycle H in G with w(H) < T'7? fo the oracle fo somehow

figure out which edges are
involved in the minimum HC?¢

Given only a single bit of

information per call fo the oracle

14

OO0 O‘Q‘Q‘Qio.o.o.o.o ,o.o.o.oéy‘g‘og‘ ..

SBSERBEES R s s
TSP-Optimization <., TSP-Dec e Smove an
Algorithm: TSP-Optimization-Solver(G = (V, E), w) R

external TSP-OptimalValue-Solver, TSP-Dec-Solver

T* < TSP-OptimalValue-Solver (G, w) e
if 7* = co then return (“no hamiltonian cycle exists”) R
Wo < W

H<+ 0

forallec £

(wole] < oo
if not TSP-Dec-Solver(G,wq,T™)

wole] — wle]
e {H<— HU{e}

do [

return (H)

[e 0 S B OB P OB B
. 8 e o e e e s
IO MO e ;
.
- .
ar)
.4 [
PR
LA ; L
.)
.. |) L
.)
., . }
.~v‘] |
0 !
4.2 {))
. I) [
»)
AN } b
OH i)
v:.‘...”..,v,. }
.. | } [
e]
" _
.

16

So this is a correct reduction.

TS P-Optimization Sg TSP-Dec ls it a polytime reduction?

What's the runtime?

Algorithm: TSP-Optimization-Solver(G = (V, FE), w)
external TSP-OptimalValue-Solver, TSP-Dec-Solver _
T* < TSP-OptimalValue-Solver (G, w) —tpoly(Size(D))} What's Size(I)?

if 7* = oo then return (“no hamiltonian cycle exists") (What's a “useful” lower bound?)

wy < w . 0@m)tocopy mafrix

for all ¢ € &

(wole] < oo
if not TSP-Dec-Solver(G,wq,T™)

wole] wle]
[Hien {HO<—HU{6}

do

return (H)

NEGVN

Showed three flavours of TSP are polytime-equivalent
(I.e., if you can solve one flavour in polyfime,
you can solve all three flavours in polytime)

* One of these was a decision problem (yes/no),
and the other two were not (fotal weight, actual cycle)

Decision and non-decision flavours
of a problem are often polytime-equivalent

» Proofs for a polytime Turing reduction

 Correctness (return value is correct for every possible input)

* Polytime (runtime is polynomial in the input size)
[or poly(some lower bound on the input size)]

18

L)
LA I

P e 1

COMPLEXITY CLASS NP

NP: Non-deterministic polynomial time

19

EXAMPLE: SUBSET-SUM PROBLEM

« SUppoOse we are given some integers, -7, -3, -2, 5, 8

* Does some subset of these sum fo zero? "ggingsich a'subset can

. In this case, ves: (_3) o (_2) +5=0 be extremely difficult
Suppose | give you a certificate Of course, | might lie and give you @
consisting of an array of numbers, subset that does not sum to zero...
and claim it represents such a subset
If I'm telling the truth, then we call | could even give you numbers that

this a yes-certificate. It is is are not in the input...

essentially a proof that

‘yes” is the correct output. Can you determine whether | am

lying in polynomial time?

Can you use a yes-certificate to

solve the problem efficiently?

20

SUBSET-SUM VIA NON-DETERMINISTIC ORACLE

. Suppose there is a non-deterministic oracle, Otherwise, either C is not a
subset of the input (refurn

which refurns a subset that sums to 0 if one exists false), or C sums to a non-
and otherwise can return anything (even garbage) zero value (return false)

« We call the oracle’s output a certificate

S Hficat T Ivti If there exists a subset that
iven a cernincare, cCan you verity in poilyime sums to 0, then C is one such

whether It describes a solution to the problem? subset. and we return true

SubsetSumWithOracle (I)
C = Oracle(I)
return verify (I, C)

Given such an oracle,
this algorithm would
solve subset-sum

-] @ M s W [

verify (I, C) “Non-deterministic” is the
if C not subset of I then return false N in NP, and if is so named
return (sum(C) == 0) because of oracles

Here “non-deterministic’ just means
the oracle is magically guaranteed to

return a yes-certificate if one exists =

. . e
R N
. MR EERERENE

ete e e e’
OO

PAVCLWN A

22

T > o e e ae e a : E
TSP- Optlmal Value < TSP Dec TSP-OptimalValue-Solver remains polytime even if
the oracle runs in polytime instead of O(1)!

Algorithm: TSP-OptimalValue-Solver(G, w)
external TSP-Dec-Solver
hi < ZeEE w(e)
lo <+ 0
if not TSP-Dec-Solver(G,w, hi) then return (co)
while Az > lo
(mz'd 2 [hz’—%—loJ
if TSP-Dec-Solver(G,w, mid)
then hi <+ mad
| else lo + mid + 1
return (hi)

do {

23

So this is a correct reduction.
s it a polytime reduction?¢

” What's the runtime on such an input?

Algorithm: TSP-Optimization-Solver(G = (V, FE), w)
external TSP-OptimalValue-Solver, TS g
;F — TSP—Opt/malValue—Suolver(GZw) . iz What's Size(I)?
if 7% = oo then return (“no hamiltonian cycle exists")

(or a useful lower bound on it)
wy e Oupevlogwu,v)) to copy matrix 0(1)

wole] < oo
|f not TSP—Dec—Solver G wo,T*\<-

| then{ el ¢ wle -

H + H U{e} Unit cost vs non-unit cost assumptions

return (H) ‘ usually do neot usually make a difference...

So, this is still a polytime reduction

do ¢

This should not be surprising, since the same 0(logw) terms

are introduced info both space and time complexities...

24

