
2023-11-21

1

CS 341: ALGORITHMS
Lecture 20: intractability II – complexity class NP

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

THIS TIME

• Finishing TSP reductions

• Complexity class NP

• Oracles, certificates, polytime verification algorithms

2

RECALL

• So far we know

• TSP-Dec ≤𝑃
𝑇 TSP-

Optimal Value

• TSP-Dec ≤𝑃
𝑇 TSP-

Optimization

• In progress

• TSP-Optimal Value

≤𝑷
𝑻 TSP-Dec

3

𝑆𝑖𝑧𝑒 𝐼 = 𝑆𝑖𝑧𝑒 𝐺 + 𝑆𝑖𝑧𝑒 𝑤

What’s the size of the input 𝐼 = (𝐺, 𝑤)?

Let’s relate this to runtime… what’s the runtime?

𝑆𝑖𝑧𝑒 𝐼 = |𝑉| + ෍

𝑒∈𝐸

log 𝑤 𝑒 + 1 + log 𝑉 + 1

So, suppose 𝐺 is represented as an array of adjacency lists (one list for each vertex),
with each list containing edges to neighbouring vertices,

and an edge is represented by a weight and the name of the target vertex

Array of empty lists for all vertices 𝑣

Bits to store weight of the edge
(storing 𝑤(𝑒) takes log𝑤 𝑒 + 1 bits)

Bits to store the
name of the target

vertex (in 1..|V|)

4

For all edges

𝑂(𝐸)

𝑂(1) 𝑂(1) for the oracle

iterations: O log ℎ𝑖 − 𝑙𝑜

= logσ𝑒∈𝐸 𝑤 𝑒

𝑂(1)

Runtime 𝑇 𝐼 ∈
𝑂 𝐸 + log σ𝑒∈𝐸 𝑤(𝑒)

Let’s assume 𝑂(1) time for
operations on weights

Technically not needed to
show polytime.. But simplifies

5

COMPARING 𝑇(𝐼) AND 𝑆𝑖𝑧𝑒(𝐼)

• 𝑇 𝐼 ∈ 𝑂 𝐸 + log σ𝑒∈𝐸 𝑤(𝑒)

• 𝑆𝑖𝑧𝑒 𝐼 = |𝑉| + σ𝑒∈𝐸 log 𝑤 𝑒 + 1 + log 𝑉 + 1

 = 𝑉 + Σ𝑒∈𝐸 log 𝑤 𝑒 + 1 + 𝜮𝒆∈𝑬 log 𝑉 + 1

 = 𝑉 + Σ𝑒∈𝐸 log 𝑤 𝑒 + 1 + Σ𝑒∈𝐸 log 𝑉 + |𝑬|

• Want to show 𝑇 𝐼 ∈ 𝑂 𝑆𝑖𝑧𝑒 𝐼 𝑐 for some constant 𝑐 (we show c=1)

𝑂 𝑬 + log σ𝑒∈𝐸 𝑤 𝑒 ⊆? 𝑂 𝑉 + Σ𝑒∈𝐸(log 𝑤 𝑒 + 1) + Σ𝑒∈𝐸 log 𝑉 + 𝑬

 ⇔ 𝑂 log σ𝑒∈𝐸 𝑤 𝑒 ⊆? 𝑂 𝑉 + Σ𝑒∈𝐸 log 𝑤 𝑒 + 1 + Σ𝑒∈𝐸 log 𝑉

How to compare 𝐥𝐨𝐠 σ𝒆∈𝑬 𝒘(𝒆) and 𝚺𝒆∈𝑬 𝐥𝐨𝐠 𝒘 𝒆 + 𝟏 ?

6

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

2023-11-21

2

COMPARING 𝑇(𝐼) AND 𝑆𝑖𝑧𝑒(𝐼)
• How to compare 𝐥𝐨𝐠 σ𝒆∈𝑬 𝒘(𝒆) and 𝚺𝒆∈𝑬 𝐥𝐨𝐠 𝒘 𝒆 + 𝟏 ?

• 𝚺𝒆∈𝑬 𝐥𝐨𝐠 𝒘 𝒆 + 𝟏 = log 𝑤 𝑒1 + 1 + log 𝑤 𝑒2 + 1 + ⋯ + log 𝑤 𝑒 𝐸 + 1

• Can we combine these terms into one log using log 𝑥 + log 𝑦 = log 𝑥𝑦?

• 𝚺𝒆∈𝑬 𝐥𝐨𝐠 𝒘 𝒆 + 𝟏 = log 𝑤 𝑒1 + log 2 + + ⋯ + log 𝑤 𝑒 𝐸 + log 2

• 𝚺𝒆∈𝑬 𝐥𝐨𝐠 𝒘 𝒆 + 𝟏 = log 2𝑤 𝑒1 2𝑤 𝑒2 … 2𝑤 𝑒 𝐸 = 𝐥𝐨𝐠 ς𝒆∈𝑬 𝟐𝒘 𝒆

• So how to compare 𝐥𝐨𝐠 ς𝒆∈𝑬 𝟐𝒘 𝒆 and 𝐥𝐨𝐠 σ𝒆∈𝑬 𝒘(𝒆)?

• All 𝒘 𝒆 are positive integers, so ς𝒆∈𝑬 𝟐𝒘 𝒆 ≥ σ𝒆∈𝑬 𝒘(𝒆)

• Since log is increasing on ℤ+, 𝐥𝐨𝐠 ς𝒆∈𝑬 𝟐𝒘 𝒆 ≥ 𝐥𝐨𝐠 σ𝒆∈𝑬 𝒘(𝒆)

7

COMPARING 𝑇(𝐼) AND 𝑆𝑖𝑧𝑒(𝐼)

• We in fact show 𝑻 𝑰 ∈ 𝑂(𝑆𝑖𝑧𝑒 𝐼)

𝑂 log σ𝑒∈𝐸 𝑤 𝑒 ⊆? 𝑂 𝑉 + Σ𝑒∈𝐸 log 𝑤 𝑒 + 1 + Σ𝑒∈𝐸 log 𝑉

How to compare 𝐥𝐨𝐠 σ𝒆∈𝑬 𝒘(𝒆) and 𝚺𝒆∈𝑬 𝐥𝐨𝐠 𝒘 𝒆 + 𝟏 ?

We just saw 𝚺𝒆∈𝑬 𝐥𝐨𝐠 𝒘 𝒆 + 𝟏 = 𝐥𝐨𝐠 ς𝒆∈𝑬 𝟐𝒘 𝒆 ≥ 𝐥𝐨𝐠 σ𝒆∈𝑬 𝒘(𝒆)

8

So 𝑻 𝑰 ∈ 𝑶 𝑺𝒊𝒛𝒆 𝑰 𝒄 where 𝒄 = 𝟏
So this reduction has runtime that is

polynomial in the input size!

So TSP-OptimalValue-Solver is polytime… But is it a
correct reduction from TSP-Optimal Value to TSP-Dec?

Need to prove:
TSP-OptimalValue-Solver(G,w)

returns the weight 𝑾
of the shortest Hamiltonian Cycle (HC) in G

Sketch: We return ∞ iff there is no HC.
Key loop invariant: 𝑾 ∈ [𝒍𝒐, 𝒉𝒊].
So, at termination when ℎ𝑖 = 𝑙𝑜,

we return exactly ℎ𝑖 = 𝑊.

9

We have therefore shown:
TSP-Optimal Value is polytime

reducible to TSP-Dec

So, if an 𝑶 𝟏 implementation of TSP-Dec-Solver
exists, then we have a polytime implementation of

TSP-Optimal-Value-Solver!

So, TSP-OptimalValue-Solver is polytime,
and is a correct reduction.

In fact, TSP-OptimalValue-Solver remains
polytime even if the implementation of the

oracle runs in polytime instead of O(1)! (bonus slides)

10

PROVING REDUCTIONS CORRECT

• In more complex reductions where we transform the input
before calling the oracle, we will need a more complex proof:

• (A) If there is a(n optimal) solution in the input, our
transformation will preserve that solution so the oracle can find
it, and

• (B) Our transformation doesn’t introduce new solutions that are

not present in the original input

• (i.e., if we find a solution in the transformed input, there was

a corresponding solution in the original input)

11

More on this later…

Input 𝐼 Examples of BAD
choices of 𝑆𝑖𝑧𝑒(𝐼)

int 𝑥 𝑥

Graph 𝑉, 𝐸 2|𝑉| or

𝑉 |𝐸| or
σ𝑒∈𝐸 𝑤(𝑒)

𝐴[1. . 𝑛] of int 2𝑛 or
σ𝑖 𝐴[𝑖]

INPUT SIZE CHEAT SHEET

Input 𝐼 Perfectly fine
choices of 𝑆𝑖𝑧𝑒(𝐼)

int 𝑥 1 or
⌊log 𝑥 ⌋ + 1
(can simplify to

𝐥𝐨𝐠 𝒙 + 𝟏 or 𝐥𝐨𝐠 𝒙)

Graph 𝑉, 𝐸

with weights 𝑊:

|𝑉| or
|𝐸| or

𝑉 2 or
𝑉 + |𝐸| or

σ𝑒∈𝐸(log 𝑤 𝑒 + 1) or

σ𝑢,𝑣∈𝑉 (log 𝑤 𝑢, 𝑣 + 1) or

any sum of terms above

𝐴[1. . 𝑛] of int 𝑛 or
σ𝑖(log 𝐴 𝑖 + 1)

𝑛 x 𝑛 matrix 𝑚 𝑛2 or

σ𝑖,𝑗 (log 𝑚𝑖𝑗 + 1)

Pick any expression that
makes your analysis easy

Technically any pseudo-polynomial
combination of these terms is fine.

 For example, the following is fine:

𝐸 100 + 𝑉 2 ⋅ σ𝑒∈𝐸(log 𝑤 𝑒 + 1)

Exponentially larger than
optimal representation!

Pseudo-polynomial ~= no exponentiation
of non-constant terms

To write down x=1,
need log(1)+1=1 bit.

For x=2 this is 2 bits.
For x=4, 3 bits.

12

2023-11-21

3

• So far we know

• TSP-Dec ≤𝑃
𝑇 TSP-Optimal Value

• TSP-Dec ≤𝑃
𝑇 TSP-Optimization

• TSP-Optimal Value ≤𝑃
𝑇 TSP-Dec

• Let’s show

• TSP-Optimization ≤𝑃
𝑇 TSP-Dec

13

WHAT ABOUT REDUCING
TSP-OPTIMIZATION TO TSP-DEC?

Need to return the actual
minimum Hamiltonian Cycle!

Given only a single bit of
information per call to the oracle

We already know how to
get the weight 𝑻∗ of the

minimum HC…

Idea: Use 𝑻∗ along with calls
to the oracle to somehow

figure out which edges are
involved in the minimum HC?

14

Already know this call is poly-time
reducible to TSP-Dec!

If removing edge 𝑒 removes every
Hamiltonian cycle of minimum weight

then 𝑒 is part of every minimum
Hamiltonian cycle, and we add it to 𝐻

(and add it back into the graph)

To remove any dependence on this
“other oracle,” simply replace this call

with the reduction code we showed

At the end, the graph contains
precisely the edges that are needed

to produce a minimum HC

[Correctness] Loop invariant: there
exists a HC of weight 𝑇∗ in 𝑤0

By the end of the loop, 𝐻 contains all finite edges in 𝑤0 So some HC 𝑪 of weight 𝑇∗ is contained in 𝑯

15

Graph 𝑯

4
1

1

3 3

2

15

At the end of the algorithm, there is
a Hamiltonian Cycle 𝑪 of optimal weight 𝑇∗ contained in 𝐻

In this case, there are some other edges in 𝐻 as well.

If 𝑯 is precisely 𝑪, then we are done.
Suppose not to obtain a contradiction.

Hamiltonian cycle
𝑪 of weight 𝑻∗

Let 𝑒 be one such edge.

Consider the iteration when 𝑒 was processed.
Note 𝑒 was not removed in this iteration!

Edge 𝒆

Doing so would remove all Hamiltonian Cycles of weight 𝑇∗,
including 𝑪.

16

This means the edge must be part of 𝑪---contradiction!

So this is a correct reduction.
Is it a polytime reduction?

𝑂(1)

O(𝑚) iterations

O(1) per
iteration

𝑂(𝑚) to copy matrix

What’s 𝑺𝒊𝒛𝒆(𝑰)?
(What’s a “useful” lower bound?)

𝑂(1) to create list

Runtime = 𝑝𝑜𝑙𝑦 𝑆𝑖𝑧𝑒 𝐼 + 𝑂 𝑚

What’s the runtime?

𝑆𝑖𝑧𝑒 𝐼 = Ω |𝐸| = Ω(𝑚)

Let’s assume unit costs for simplicity

Clearly 𝑂 𝑚 ∈ 𝑂 𝑆𝑖𝑧𝑒 𝐼 1

So runtime is in 𝑝𝑜𝑙𝑦 𝑆𝑖𝑧𝑒 𝐼

So yes, this is a polytime reduction

𝑝𝑜𝑙𝑦 𝑆𝑖𝑧𝑒 𝐼

What would change if we precisely counted the
number of bits in each edge, weight, etc., in 𝑆𝑖𝑧𝑒(𝐼)?

17

What if operations on weight 𝒘 took 𝑶(𝐥𝐨𝐠 𝒘) time? (bonus slides)

RECAP
• Showed three flavours of TSP are polytime-equivalent

(i.e., if you can solve one flavour in polytime,
you can solve all three flavours in polytime)

• One of these was a decision problem (yes/no),
and the other two were not (total weight, actual cycle)

• Decision and non-decision flavours

of a problem are often polytime-equivalent

• Proofs for a polytime Turing reduction

• Correctness (return value is correct for every possible input)

• Polytime (runtime is polynomial in the input size)
 [or poly(some lower bound on the input size)]

18

2023-11-21

4

COMPLEXITY CLASS NP
NP: Non-deterministic polynomial time

19

Note: only one of my
sections got here

EXAMPLE: SUBSET-SUM PROBLEM
• Suppose we are given some integers, -7, -3, -2, 5, 8

• Does some subset of these sum to zero?

• In this case, yes: (-3) + (-2) + 5 = 0

Suppose I give you a certificate

consisting of an array of numbers,
and claim it represents such a subset

Of course, I might lie and give you a

subset that does not sum to zero…

If I’m telling the truth, then we call

this a yes-certificate. It is is
essentially a proof that

“yes” is the correct output.

I could even give you numbers that

are not in the input…

Finding such a subset can

be extremely difficult

Can you use a yes-certificate to

solve the problem efficiently?

Can you determine whether I am

lying in polynomial time?

20

SUBSET-SUM VIA NON-DETERMINISTIC ORACLE

• Suppose there is a non-deterministic oracle,
which returns a subset that sums to 0 if one exists
and otherwise can return anything (even garbage)

• We call the oracle’s output a certificate

• Given a certificate, can you verify in polytime
whether it describes a solution to the problem?

Given such an oracle,

this algorithm would

solve subset-sum

If there exists a subset that

sums to 0, then C is one such

subset, and we return true

Otherwise, either C is not a

subset of the input (return

false), or C sums to a non-

zero value (return false)

Here “non-deterministic” just means
the oracle is magically guaranteed to

return a yes-certificate if one exists

“Non-deterministic” is the
N in NP, and it is so named

because of oracles

21

BONUS SLIDES

22

The key idea is: Consider polynomials 𝑃𝑅(𝑠) and
𝑃𝑂 𝑠 representing the runtime of a reduction and its

oracle, respectively, on an input of size 𝑠.
Worst possible runtime happens if every step in the

reduction is a call to the oracle.

This is 𝑷𝑹 𝒔 𝑷𝑶(𝒔) --- multiplication of polynomials.

TSP-OptimalValue-Solver remains polytime even if
the oracle runs in polytime instead of O(1)!

But multiplying polynomials of degrees 𝑑1, 𝑑2 results in a
polynomial of degree ≤ 𝑑1 + 𝑑2. Example:

𝑃1 𝑥 = 5𝑥2 + 10𝑥 + 100
𝑃2 𝑥 = 20𝑥3 + 20

𝑃1 𝑥 𝑃2(𝑥) = (5𝑥2 + 10𝑥 + 100)(20𝑥3 + 20)
= 100𝑥5 + 200𝑥4 + 2000𝑥3 + 100𝑥2 + 200𝑥 + 2000

23

So this is a correct reduction.
Is it a polytime reduction?

𝑂(1)

𝑂(𝑚) iterations: for all 𝒖, 𝒗

𝑂 log 𝑤 𝑢, 𝑣

𝑂(σ𝑢,𝑣∈𝑉 log 𝑤 𝑢, 𝑣) to copy matrix

What’s 𝑺𝒊𝒛𝒆(𝑰)?
(or a useful lower bound on it)

𝑂(1) to create list

Runtime = 𝑝𝑜𝑙𝑦 𝑆𝑖𝑧𝑒 𝐼

+𝑂 𝑚 + σ𝑢,𝑣∈𝑉 log𝑤 𝑢, 𝑣

What’s the runtime on such an input?

𝑆𝑖𝑧𝑒 𝐼 = 𝑂 |𝐸| + σ𝑢,𝑣∈𝑉 log 𝑤 𝑢, 𝑣

Let’s assume 𝑂(log 𝑤) time for reading/writing/arithmetic
operations on each weight w (and 𝑂 log 𝑤 space).

Clearly 𝑂 𝑚 + σ𝑢,𝑣∈𝑉 log 𝑤 𝑢, 𝑣 ∈ 𝑝𝑜𝑙𝑦 𝑆𝑖𝑧𝑒 𝐼

So, this is still a polytime reduction

This should not be surprising, since the same 𝑂(log 𝑤) terms
are introduced into both space and time complexities…

𝑂(1)

𝑂 log 𝑤 𝑢, 𝑣

𝑂(1)
Unit cost vs non-unit cost assumptions

usually do not usually make a difference…

Suppose we show

this is 𝑝𝑜𝑙𝑦 𝑆𝑖𝑧𝑒 𝐼

24

