CS 341: ALGORITHMS

Lecture 20: infractability Il - complexity class NP
Readings: see website

Trevor Brown
https://student.cs.uwaterloo.ca/~cs341
trevor.brown@uwaterloo.ca

RECALL

Travelling Salesperson Problems

Problem 7.5

TSP-Optimization

Instance: A graph G and edge weights w: E — Z*.

Find: A hamiltonian cycle H in G such that w(H) = £, oy w(e) is

So far we know
TSP-Dec <} TSP-

Optimal Value minimized.
TSP-Dec <} TSP- Problem 7.6
Optimization TSP-Optimal Value
P Instance: A graph G and edge weights w: E — Z+.
In progress Find: The minimum T such that there exists 2 hamiltonian cycle if in G
" with w(H) =T.
TSP-Optimal Value
<I TSP-Dec Problem 7.7
TSP-Decision

Instance: A graph G, edge weights w: E —+ Z*, and a target T.
Question: Does there exist a hamiltonian cycle H in G with w(H) <T7

TSP-Optimal Value <% TSP-Dec

Let's assume 0(1) time for | Technically not needed fo
operations on weights | show polytime.. But simpifies

Algorithm: TSP-OptimalValue-Solver(G, w)
external TSP-Dec-Solver
hi 3, cpw(e)

lo 0
if not TSP-Dec-Solver(G,w, hi) then return (o)

while hi > lo # iterations: 0(log(hi — lo))

mid + | ESRTE))
do A IF TSP-Dec-Solver(G,w, mid) i 0(|E‘L|J:“]TgeZT(I)WE(e))
then hi «+ mid ek
else lo « mid + 1
return (hi)

2023-11-21

THIS TIME

Finishing TSP reductions
Complexity class NP
Oracles, certificates, polytime verification algorithms

[What's the size of the input I = (G, w)? |

Size(l) = Size(G) + Size(w)

with each list containing edges to neighbouring vertices,

So, suppose G is represented as an array of adjacency lists (one list for each vertex),
and an edge is represented by a weight and the name of the target vertex

Bits to store weight of the edge Bits to store the
(storing w(e) takeslogw(e) + 1 bits) name of the target
vertex(in 1..|V])

Size(D) = V| + z(]cg w(e) +1+loglV| + 1)
ek s
T
Array of empty lists for all vertices v For all edges

l Let's relate this to runtime... what's the runtime 2

COMPARING T(I) AND Size(I)

T € O(|E| + logXeerw(e))

Size(I) = |V|+ Xeeg(logw(e) + 1 +loglV| + 1)
= V] + Zeep(logw(e) + 1) + Zeep(loglV] + 1)
= V] + Zeep(logw(e) + 1) + Zeep(log|V]) + |E|

Want to show T(I) € 0(Size(I)€) for some constant ¢ (we show c=1)

O(IE| +1ogTeer w(e)) € O(IV| + Eep(logw(e) + 1) + Zep loglV| + |EI)

& 0(log Lees w(e)) € O(IV| + Zeeg(logw(e) + 1) + Zeep loglV])
How to compare logY..w(e) and X (logw(e) + 1)?

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

COMPARING T(I) AND Size(I)
How to compare log .. w(e) and X.cx(logw(e) + 1)?
Eecs(logw(e) + 1) = (logw(er) + 1) + (ogwlez) + 1) + -+ (log (wlepe)) +1)
Can we combine these terms into one log using log x + logy = log xy?
Zecp(logw(e) +1) = (logw(ey) +1og2) + +--- + (log (W(em)) +log 2)
Zecp(logw(e) + 1) = log2w(e;) 2w(ey) ... 2w(ejz) = log[Tees 2w(e)
So how to compare log[l.c; 2w(e) and log Y. w(e)?

All w(e) are positive integers, 50 [Teer 2W(e) = Tecpw(e)

Since log is increasing on Z*, log [1ecz 2w(e) = log Y cpw(e)

So TSP-OptimalValue-Solveris polytime... But is it a
correct reduction from TSP-Optimal Value to TSP-Dec?

TSP-Optimal Value <., TSP-Dec

rithm: TSP-OptimalValue-Solver(G, u Need fo prove:

Mgothin: 15 QptimalVaoa-Saher{Gyv) T5P-OptimalValue-Solver(G.w)
hi e wls returns the weight W
R g of the shortest Hamiltonian Cycle (HC) in G
if not TSP-Dec-Solver(G,w. hi) then return (oo
while hi > lo Sketch: We return o iff there is no HC.

mid + | bzl Key loop invariant: W € [lo, hi].

if TSP-Dec-Salver (G, w, mid So, at termination when hi = lo

B then hi « d wereturn exactly hi = W.
else lo ¢

return (hi)

PROVING REDUCTIONS CORRECT

In more complex reductions where we transform the input
before calling the oracle, we will need a more complex proof:

(A) If there is a(n optimal) solution in the input, our

transformation will preserve that solution so the oracle can find
it, and

(B) Our transformation doesn’t infroduce new solutions that are
not present in the original input

(i.e., if we find a solution in the transformed input, there was

a corresponding solution in the original input)

n

2023-11-21

COMPARING T(I) AND Size(I)
We in fact show T(I) € 0(Size(I))
0(logXeer w(e)) € O(IV] + Zep(logw(e) + 1) + Zeeg loglV])
How to compare log ... w(e) and Z..(logw(e) + 1)?

We just saw Zeep(logw(e) + 1) = log[lees 2w(e) = log Y .cpw(e)

So this reduction has runtime that is

So T(I) € O(Size(I)*) where c = 1 l polynomial in the input size!

TSP-Optimal Value L;_ TSP-Dec So, TsP-OptimalValue-Solver s polytime,
and is a correct reduction.

We have therefore shown:
TSP-Optimal Value is polytime
reducible to TSP-Dec

Algorithm: TSP-OptimalValue-Solver(G, w)
external TSP-Dec-Solver

hi ¥ cpwie)

lo 0

So, if an 0(1) implementation of TSP-Dec-Solver
exists, then we have a polytime implementation of
TSP-Optimal-Value-Solver!

if not TSP-Dec-Solver(G,w, hi) then return (o
while hi > lo

mid + |

do | if TSP-Dec-Solver (G, w, mid)
©) then hi « mid In fact, TSP-OptimalValue-Solver remains
else lo mid + 1 polytime evenif the implementation of the
return (hi)

oracle runs in polytime instead of O(1)! (bonus slides)

INPUT SIZE CHEAT SHEET

Exponentially larger than
optimal representation!

Perfectly fine Examples of BAD
choices of Size(I)

choices of Size(l)

To write down x=1,

int x lllfgf(x” o needlog(1)+1=1 bit. | lintx x
For x=2 this is 2 bits.
i h (V, E: V1
(‘13‘“; S;"lp;“‘:"f JL_For4 Sbis Cre) ‘2,,‘\;\”0,
log(x) log x)
Graph (V,E) V| or " Zees (€)
1E] or Pick any expression that A[L..n] of int 2" or
V2 or makes your analysis easy Al
with weights W: |V| + |E| or
Teer(log(w(e)) +1) or Pseudo-polynomial ~= no exponentiation
Suvev (log(wu,v)) +1) or of non-constant terms
any sum of terms abovi __—
A[1..n] of int nor Technically any pseudo-polynomial
Yi(log(A[i]) + 1) combination of these terms is fine.
nxn matrixm n? or For example, the following is fine:
%1 (og(my) +1) (B + V1) See(log(w(@) + 1)

So far we know
TSP-Dec <} TSP-Optimal Value
TSP-Dec <] TSP-Optimization
TSP-Optimal Value <} TSP-Dec
Let's show

TSP-Optimization <} TSP-Dec

TSP-Optimization <}, TSP-Dec

To remove any dependence on this
“other oracle," simply replace this call
with the reduction code we showed
Algorithm: TSP-Optimization-Solver(G = (V, E),w)
external TSP-OptimalValue-Solver, TSP-Dec-Solver
T* « TSP-OptimalValue-Solver(G',w)
if T
wy ¢ w
H+0
for all e € E

Already know this callis poly-fime
reducible to TSP-Dec!

>0 then return (“no hamiltonian cycle exists”)

If removing edge e removes every
Hamiltonian cycle of minimum weight

wple] « o0
do if not TSP-Dec-Solver (G, wy, T*)

wole] — wle]
then {H'FHUL}

Hamiltonian cycle, and we add it to H

then e is part of every minimum
(and add it back into the graph)

‘At the end, the graph contains
precisely the edges that are needed
to produce a minimum HC

return (H)

[Correctness] Loop invariant: there
exists a HC of weight T* in w,

15
1
By the end of the loop, H contains all finite edges in wy e - -
{ So some HC € of weight T* is contained in H

So this is a correct reduction.
Is it a polytime reduction?

What's the runtime?

TSP-Optimization <}, TSP-Dec

Algorithm: TSP-Optimization-Solver(C: = (V, E}, w) Lef's assume unit costs for simplicity

external TSP-OptimalValue-Solver, TSP-Dec-Solver Runtime = poly(Size(1)) + 0(m)
T* ¢ TSP-OptimalValue-Solver (G, w)

if T* = oo then return (“no hamiltenian cycle exjsts”) ‘ (What's a “useful” lower bound?)
wy € 0(m) fo copy matrix [

i

for all ¢ & £ —
do | IF not TSP-Dec-Solver(G, wo, T°)

wole] — wle]
then {H'FHUL}

|
]
What's Size()? ‘
Size(I) = Q(IE]) = Q(m)]

So runtime s in poly(Size(1))
0(1) per

Clearly 0(m) € 0(size()") ‘
iteration ‘

So yes, this is a polytime reduction

return (H)

What would change if we precisely counted the
number of bits in each edge, weight, etc., in Size(1)?

What if operations on weight w took 0(logw) time? (bonus slides)

7

2023-11-21

WHAT ABOUT REDUCING
TSP-OPTIMIZATION TO TSP-DEC?2

Problem 7.7
TSP-Decision
Instance: A graph G, edge weights w: E — L, and a target T.
Qumm—ﬁm;mmm'\“ ian cvcle H in G with w(H) < T?
Need to return the actual We already know how to
minimum Hamiltonian Cycle! get the weight T* of the
Problem 7.7 minimum HC...
TSP-Decision
Instance: A graph (7, edge weights w: E — &%, and a target T.

Idea: Use T* along with calls

to the oracle to somehow

figure out which edges are
involvedin the minimum HC?

Question: Does there exist a hamiltonian cycle H in G with w(H) < T?

Givenonly a single bit of
information per call fo the oracle

At the end of the algorithm, there is
a Hamilfonian Cycle € of optimal weight T* contained in H

f H is precisely C, fhen we are done.

Suppose not to obtain a contradiction.

In this case, there are some other edges in H as well.

Let e be one such edge.

Consider the iteration when e was processed.
Note e was not removed in this iteration!

Doing so would remove all Hamiltonian Cycles of weight 7°,
including C.

Hamiltonian cycle
C of weight T*

l This means the edge must be part of €---contfradiction!]

RECAP

Showed three flavours of TSP are polytime-equivalent
(i.e., if you can solve one flavourin polytime,
you can solve all three flavours in polytime)

One of these was a decision problem (yes/no),

and the other two were not (total weight, actual cycle)
Decision and non-decision flavours
of a problem are often polytime-equivalent
Proofs for a polytime Turing reduction

Correctness

(return value is correct for every possible input)
Polytime

(runtime is polynomial in the input size)
[or poly(some lower bound on the input size)]

18

COMPLEXITY CLASS NP

NP: Non-deterministic polynomial time

SUBSET-SUM VIA NON-DETERMINISTIC ORACLE

Otherwise, either C is not a
subset of the input (retum
false), or C sums to a non-
zero value (retumn false)

Suppose there is a non-deterministic oracle,
which returns a subset that sums to 0 if one exists
and otherwise can return anything (even garbage)

We call the oracle's output a certificate
Ifthere exists a subset that
sums to 0, then C is one such
subset, and we refurn true

Given a certificate, can you verify in polytime
whether it describes a solution to the problem?

SubsetSumWithoOracle (I)
€ = Oracle (I)
return verify(I, €)

Given such an oracle,
this algorithm would
solve subset-sum

verify(I, C)
if C not subset of I then return false
return (sum(C))

“Non-deterministic” is the
Nin NP, and it is so named
because of oracles

Here “non-deterministic” just means
the oracle is magically guaranteed to
return a yes-certificate if one exists

21

TSP-Optimal Value <}, TSP-Dec

TSP-OptimalValue-Solver remains polytime even if
the oracle runs in polytime instead of O(1)!

Algorithm: TSP-OptimalValue-Solver(G, w) The key idea is: Consider polynomials Pr(s) and
external TSP-Dec-Solver Po(s) representing the runfime of a reduction and ifs
hi ¢ 3 cp wle) oracle, respectively, on an input of size s.
lo 0 Worst possible runtime happens if every step in the
if not TSP-Dec-Solver(G,w, hi) then return (oc reductionis a call to the oracle.
while hi > lo This is Pr(s)Py(s) --- multiplication of polynomials.

g X ; But multiplyi i degrees d,, d,
do: ¢ T T -OncBobver (G, w0, paid) polynomial of degree < d; + d,. Example:
then hi ¢ Py(x) = 5x% + 10x + 100
else lo ¢ +1 P,(x) = 20x% + 20
return (hi) Pi(x)P,(x) = (5x% + 10x + 100) (20x® + 20)
=100x° + 200x* + 2000x> + 100x2 + 200x + 2000

2023-11-21

EXAMPLE: SUBSET-SUM PROBLEM
Suppose we are given some integers, -7,-3,-2, 5, 8
Does some subset of these sum to z
In this case, yes: (-3) + (-2) + 5=0

Suppose | give you a certificate
consisting of an array of numbers,
and claim it represents such a subset

Of course, | might lie and give you a
subset that does not sum to zero...

If I'm telling the truth, then we call I could even give you numbers that
this a yes-certificate. It is is are not in the input...
essentially a proof that
“yes" is the correct output.

Can you determine whether | am
lying in polynomial time2

Can you use a yes-certificate to
solve the problem efficiently2

20

BONUS SLIDES

|

Let's assume 0(logw) time for reading/writing/arithmetic
operations on each weight w (and 0(logw) space).

So this is a correct reduction.
Is it a polytime reduction?

What's the runtime on such an input?
Runtime = poly(Size(I))
+0(m + Zypeylogw(u v))

Algorithm: TSP-Optimization-Solver(G = (V, E),w)

external TSP-OptimalValue-Solver, TS
T* + TSP-OptimalValue-Solver(G.w) < thisis poly(Size(D)
if T* = oc_then return (“no hamiltonian cycle gxists”)

1y + d_ 0T uveylogw(u, v)) fo copy mairix_|

What's Size(I)?
(or a useful lower bound on it)
Size() = O(|E| + Lypey logw(u, v))

H+«@ 0(1) to create list
foralle € E O(m) terations: for all u,v [Clearly 0(m + Sy logw(w,v)) € poly(Size(D) |

wle] + oo 0logw(u,) |

h T So, this s stil o polytime reduction

4o Jif not TS'TD‘D‘ec Sﬁh:e:m_ v 1) d oy |
then {“" I
H — Hu{e} Unit cost vs non-unit cost assumptions

return () usually do not usually make a difference...

This should not be surprising, since the same 0(logw) terms
are infroducedinto both space and time complexities...

24

