
2023-11-29

1

CS 341: ALGORITHMS
Lecture 22: intractability V – More NPC transformations

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

LAST TIME

• Polynomial transformations

• Poly transformation from Clique to Vertex Cover

• NP Completeness

• SAT is NP complete (NPC)

• Got part way through showing 3SAT is NPC

• Did poly transformation from SAT to 3SAT

• Need to also show 3SAT is in NP

2

LET’S DO A BRIEF REVIEW
of NPC, poly transformations, and showing a problem is in NP

3

COMPLEXITY CLASS NP-COMPLETE (NPC)

4

Mechanics of proving 𝚷 ∈ 𝐍𝐏𝐂
1. Show Π is in NP
2. Show a poly transformation

from some NPC problem to Π

MECHANICS OF SHOWING A PROBLEM IS IN NP
• How to show Π ∈ 𝑁𝑃

1. Define a yes-certificate

2. Design a poly-time 𝑣𝑒𝑟𝑖𝑓𝑦(𝐼, 𝐶) algorithm

3. Correctness proof

• Case 1: Let 𝐼 be any yes-instance;
Find 𝐶 such that 𝑣𝑒𝑟𝑖𝑓𝑦 𝐼, 𝐶 = 𝑡𝑟𝑢𝑒

• Case 2: Let 𝐼 be any no-instance,
 and 𝐶 be any certificate;

Prove 𝑣𝑒𝑟𝑖𝑓𝑦 𝐼, 𝐶 = 𝑓𝑎𝑙𝑠𝑒

5

• Let Π1 and Π2 be decision problems

• 𝚷𝟏 ≤𝑷 𝚷𝟐 iff there exists 𝑓 ∶ ℐ Π1 → ℐ(Π2) such that:

• 𝑓(𝐼) is computable in poly-time, for all 𝐼 ∈ ℐ(Π1)

• If 𝐼 ∈ ℐ𝑦𝑒𝑠(Π1) then 𝑓 𝐼 ∈ ℐ𝑦𝑒𝑠(Π2)

• If 𝒇(𝑰) ∈ 𝓘𝒚𝒆𝒔(𝚷𝟐) then 𝑰 ∈ 𝓘𝒚𝒆𝒔(𝚷𝟏)

6

POLYNOMIAL TRANSFORMATION
FOR PROVING 𝚷𝟐 IS IN NPC

Known NPC
problem

Problem you want
show is NPC

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

2023-11-29

2

LET’S FINISH SHOWING 3SAT ∈ NPC
- Already poly transformed SAT to 3SAT

- Need to show 3SAT in NP

7

PROVING 3SAT IS IN NP

1. Define desired YES-certificate

2. Design a poly-time 𝑣𝑒𝑟𝑖𝑓𝑦(𝐼, 𝐶) algorithm

3. Correctness proof

• Case 1: Let 𝐼 be any yes-instance;
Find 𝐶 such that 𝑣𝑒𝑟𝑖𝑓𝑦 𝐼, 𝐶 = 𝑡𝑟𝑢𝑒

• Case 2: Let 𝐼 be any no-instance,
 and 𝐶 be any certificate;

Prove 𝑣𝑒𝑟𝑖𝑓𝑦 𝐼, 𝐶 = 𝑓𝑎𝑙𝑠𝑒

• Contrapositive of case 2:
Suppose 𝑣𝑒𝑟𝑖𝑓𝑦 𝐼, 𝐶 = 𝑡𝑟𝑢𝑒;

Prove 𝐼 is a yes-instance

3SAT input 𝑰 = (𝑪𝒍𝒂𝒖𝒔𝒆𝒔[𝟏. . 𝒎], 𝒏):
a list of 𝒎 clauses, and the number 𝒏 of variables.
Each clause contains literals. Each literal is a pair

(var, neg): a variable ∈ {1. . 𝑛} & a negation bit

YES-certificate 𝐶 = array with one bit

per variable in {1. . 𝑛} representing a

satisfying assignment

This takes O(Clauses) time, which is

polynomial in Size(𝐼)

8

MECHANICS OF SHOWING A PROBLEM IS IN NP

1. Define desired YES-certificate

2. Design a poly-time 𝑣𝑒𝑟𝑖𝑓𝑦(𝐼, 𝐶) algorithm

3. Correctness proof

• Case 1: Let 𝐼 be any yes-instance;
Find 𝐶 such that 𝑣𝑒𝑟𝑖𝑓𝑦 𝐼, 𝐶 = 𝑡𝑟𝑢𝑒

• Case 2: Let 𝐼 be any no-instance,
 and 𝐶 be any certificate;

Prove 𝑣𝑒𝑟𝑖𝑓𝑦 𝐼, 𝐶 = 𝑓𝑎𝑙𝑠𝑒

• Contrapositive of case 2:
Suppose 𝑣𝑒𝑟𝑖𝑓𝑦 𝐼, 𝐶 = 𝑡𝑟𝑢𝑒;

Prove 𝐼 is a yes-instance

Let 𝐼 be a yes-instance of 3SAT. Then

it has a satisfying assignment 𝑨𝒔.

And, 𝑣𝑒𝑟𝑖𝑓𝑦(𝐼, 𝐴𝑠) will see that each

clause contains a literal satisfied by

this assignment, so 𝑣𝑒𝑟𝑖𝑓𝑦 will see

𝑛𝑢𝑚𝑆𝑎𝑡 = |𝐶𝑙𝑎𝑢𝑠𝑒𝑠| and return true.

Suppose 𝑣𝑒𝑟𝑖𝑓𝑦(𝐼, 𝐶) returns true.

Then 𝑛𝑢𝑚𝑆𝑎𝑡 = |𝐶𝑙𝑎𝑢𝑠𝑒𝑠|, so 𝑛𝑢𝑚𝑆𝑎𝑡 was

incremented in each iteration of the loop

over clauses, so each clause contains a

satisfied literal, so the 3SAT formula in 𝐼 is

satisfied by 𝐶, so 𝐼 is a yes-instance.

It follows that 3SAT is in NP.
Since we have already shown SAT ≤𝑃 3SAT,

we now know that 3SAT is NP-COMPLETE.

9

Every problem in NP

can be poly transformed to

Since SAT is NP-complete,
so is 3-SAT!

Today and next time let’s start filling out a
hierarchy of reductions that prove several

problems are NP complete

can be poly transformed to

3-SAT

SAT

10

But first, since you need to know NP hardness
for your assignment…

NP-HARDNESS
Intuitively: problems that are at least as hard as NP-complete

(but are not necessarily decision problems)

11

Reduction from lecture 19/20

TSP-Optimal Value is also
NP-hard (and not in NP) This version returns the

total weight of an optimal

Hamiltonian cycle

TSP-Decision ≤𝑷
𝑻 TSP-Optimization

Returns an optimal
Hamiltonian cycle

12

2023-11-29

3

COMPARING NPC AND NP HARD

• Π ∈ NPC

• Must be a decision problem

• Must poly transform some NPC problem to Π

• Must show Π in NP

• Π ∈ NPHard

• Does not need to be a decision problem

• Can use either poly transform or poly Turing reduction

• Does not need to be in NP (and can’t be if not decision)

13 14

TWO POSSIBLE REALITIES…

15

SOME PROBLEMS IN EACH

BFS

We think some stuff
may exist here, called

NP intermediate
problems… but we’re

not sure

SAT, TSP-
Decision

TSP
optimization

ESTABLISHING ANOTHER NPC PROBLEM

16

… BY TRANSFORMING 3-SAT TO CLIQUE
(Proving 3-SAT ≤𝑃 Clique)

SHOWING 3-SAT ≤𝑃 CLIQUE
• Let 𝐼 be an instance of 3-SAT with 𝑛 variables 𝑥1 … 𝑥𝑛 and 𝑚 clauses 𝐶1 … 𝐶𝑚

• E.g., 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥3 ∨ 𝑥5 ∧ (𝑥3 ∨ 𝑥4 ∨ 𝑥5) [𝑛 = 5, 𝑚 = 4]

• We construct Clique input 𝒇 𝑰 = (𝑮, 𝒌) :

• Node 𝑣ℓ
𝑐 for each literal 1 ≤ ℓ ≤ 3 in

each clause 1 ≤ 𝑐 ≤ 𝑚 (so V = 3𝑚)

• Edges between all non-contradictory

pairs of nodes (no 𝑥𝑖 ∧ ഥ𝑥𝑖) in different clauses

• 𝑘 = 𝑚 (can we find an 𝒎-clique?)

• Must prove this is a polynomial transformation

𝑣1
1 𝑥1𝐶1: 𝑣2

1 𝑥2 𝑣3
1 𝑥3

𝑣1
2 𝑥1𝐶2: 𝑣2

2 𝑥2 𝑣3
2 𝑥3

𝑣1
3 𝑥2 𝑣2

3 𝑥3 𝑣3
3 𝑥5

𝑣1
4 𝑥3 𝑣2

4 𝑥4 𝑣3
4 𝑥5

Reasonable 3-SAT representation: 𝑎𝑟𝑟𝑎𝑦[1. . 𝑚] of

clauses <𝑙1 , 𝑙2, 𝑙3> of literals <𝑣, 𝑛𝑒𝑔> where 𝑣 ∈ {1. . 𝑛}.
Runtime: create 3𝑚 nodes, O(𝑚2)

edges, at 𝑂(1) time each

17

Note 𝑂 𝑚 ⊆ 𝑂 𝑆𝑖𝑧𝑒 𝐼 ,

So runtime 𝑂 𝑚2 ⊆ 𝑂(𝑆𝑖𝑧𝑒 𝐼 2) ➔ polytime!

SHOWING 3-SAT ≤𝑃 CLIQUE
• Let 𝐼 be an instance of 3-SAT with 𝑛 variables 𝑥1 … 𝑥𝑛 and 𝑚 clauses 𝐶1 … 𝐶𝑚

• E.g., 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥3 ∨ 𝑥5 ∧ (𝑥3 ∨ 𝑥4 ∨ 𝑥5)

• Case 1: Suppose 𝐼 is a yes-instance of 3-SAT,
and show 𝒇 𝑰 is a yes-instance of 𝒎-clique

• Since 𝐼 is a yes-instance, ∃ a satisfying assignment

• E.g., 𝑥1 = 1, 𝑥2 = 1, 𝑥3 = 1, 𝑥4 = 0, 𝑥5 = 0

• For each clause 𝑪𝒊, let 𝒔𝒊 be a satisfied literal in 𝑪𝒊

• E.g., 𝒔1 = 𝑥1, 𝒔2 = 𝑥2, 𝒔3 = 𝑥3, 𝒔4 = 𝑥5

• Claim: the corresponding nodes form an 𝒎-clique

• There are 𝑚 of these nodes, each in a different clause

• None of them represent contradictory truth assignments

• So, there are edges between all pairs of them → they form an 𝑚-clique

𝑣1
1 𝑥1 𝑣2

1 𝑥2 𝑣3
1 𝑥3

𝑣1
2 𝑥1 𝑣2

2 𝑥2 𝑣3
2 𝑥3

𝑣1
3 𝑥2 𝑣2

3 𝑥3 𝑣3
3 𝑥5

𝑣1
4 𝑥3 𝑣2

4 𝑥4 𝑣3
4 𝑥5

𝒗𝟏
𝟏

𝒗𝟐
𝟐

𝒗𝟐
𝟑

𝒗𝟑
𝟒

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟓

𝑥1

𝑥2

𝑥3

𝑥5

18

2023-11-29

4

SHOWING 3-SAT ≤𝑃 CLIQUE
• Let 𝐼 be an instance of 3-SAT with 𝑛 variables 𝑥1 … 𝑥𝑛 and 𝑚 clauses 𝐶1 … 𝐶𝑚

• E.g., 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥3 ∨ 𝑥5 ∧ (𝑥3 ∨ 𝑥4 ∨ 𝑥5)

• Case 2: Suppose 𝒇(𝑰) is a yes-instance of 𝑚-clique,
and show 𝐼 is a yes-instance of 3-SAT

• Since 𝑓(𝐼) is a yes-instance, it contains an 𝑚-clique

• Clique contains edges between all pairs of nodes

• There are no edges between nodes in same clause,
so clique contains one node from each clause

• Set the corresponding literals to be satisfied

• Clique contains no edges between contradictory literals
(i.e., no edge connects 𝑥𝑖 and ഥ𝑥𝑖 for any 𝑖)

• So, truth assignment is consistent and satisfies each clause (and the formula)

𝑣1
1 𝑥1 𝑣2

1 𝑥2 𝑣3
1 𝑥3

𝑣1
2 𝑥1 𝑣2

2 𝑥2 𝑣3
2 𝑥3

𝑣1
3 𝑥2 𝑣2

3 𝑥3 𝑣3
3 𝑥5

𝑣1
4 𝑥3 𝑣2

4 𝑥4 𝑣3
4 𝑥5

𝒗𝟏
𝟏

𝒗𝟐
𝟐

𝒗𝟐
𝟑

𝒗𝟑
𝟒

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟓

𝑥1

𝑥2

𝑥3

𝑥5

19

LAST STEP: SHOW CLIQUE IS IN NP

• YES-certificate: array of k nodes forming a clique

• Verify(I,C):

• Check certificate is array of length k, containing vertex IDs

• Check all-to-all edges to verify these vertices form a clique

• 𝑂 𝑘2 ⊆ 𝑂(|𝑉|2) runtime → polytime

• Correctness: exercise! Need to prove:

• if I is a yes instance, verify returns yes, and

• if verify returns yes then I is a yes instance

20

Every problem in NP
can be poly transformed to

3-SAT

SAT

21

Every problem in NP
can be poly transformed to

This additional poly transformation was
proved last class (CL to VC)!

We also need to show Vertex Cover is
in NP. Exercise. ☺

3-SAT

SAT

22

REDUCING VERTEX-COVER TO SUBSET-SUM
(Proving Vertex-Cover ≤𝑃 Subset-Sum)

(if we have time)

SUBSET-SUM (SLIGHTLY DIFFERENT FROM BEFORE)

• Earlier, we defined Subset-Sum with a target sum of 0

• Here we add a target sum T and take positive integers as input

Idea: turn nodes and edges into a list of

integers and a target sum W. Sum W should

be achievable IFF there is a k-vertex cover.

Somehow want the array of integers to encode which edges are covered by various nodes,

and target sum to encode that every edge is covered if W is achieved

Goal: transform instance 𝐼 of VC into instance

𝑓 𝐼 of SS (in poly time) such that 𝐼 is a
yes-instance of VC iff 𝑓(𝐼) is a yes-instance of SS

𝑊

𝑊

2023-11-29

5

Input to

Vertex Cover

Sort of like an adjacency

matrix, but instead of storing

which node-pairs are

adjacent, store which edges

are incident to each node𝒄𝒊𝒋 = is edge j covered by node i?

Each edge becomes a

unique integer in the array:
edge 𝑒𝑗 becomes 10𝑗

ints

E.g.,

Each edge becomes a

unique integer in the array:
edge 𝑒𝑗 becomes 10𝑗

Each node becomes a
integer in the array:

10𝑚 + the integers for all

edges incident to the nodeints

+10𝑚 means the integer for

a node is at least one digit

longer than the integers for

all edges

E.g.,

Each edge becomes a

unique integer in the array:
edge 𝑒𝑗 becomes 10𝑗

Each node becomes a
integer in the array:

10𝑚 + the integers for all

edges incident to the nodeints

This target weight

asks for 𝒌 nodes

and for all edges to

be included twice

Why twice? If both

endpoints of 𝑒𝑗 are

in the vertex cover,

it is counted twice.

Otherwise once,
and can add 𝑏𝑗.

EXAMPLE

Edge 𝑒4
edge

node

Node 𝑣1

Node 𝑣5
Sum of edge sizes

incident to 𝑣1, plus 10𝑚

Is there a 2-VC? Use subset sum
to search for 𝑊 = 𝟐22222

Looking for
2 nodes

All 5 edges
counted

twice

Note: no “carrying” can occur
even if we sum everything

Most significant digit(s) of 𝑊
accurately capture # of nodes

Other digits are in [0,3]. An
edge is definitely covered by

a node if its digit is 2.

Subset sum looks for a subset of
𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏4

that sums to 𝑊

It finds 𝑊 = 𝒂𝟐 + 𝒂𝟑 + 𝑏0 + 𝑏1 + 𝑏3 + 𝑏4

𝒂𝟐 + 𝒂𝟑 = 𝟐𝟏𝟏𝟐𝟏𝟏

Edge 𝑒2 counted twice, other
edges once. Sum uses 𝑏0, 𝑏1, 𝑏3, 𝑏4

to get all to be counted twice.

Edge 𝑒0

𝑒𝑗 has both endpoints in 𝑉′,

so nodes in 𝑉′ contribute

𝟐 × 𝟏𝟎𝒋 to 𝑊

𝑒𝑗 has one endpoint in 𝑉′,

so nodes in 𝑉′ contribute

𝟏 × 𝟏𝟎𝒋 to 𝑊

Add another 𝟏 ×𝒋 to 𝑊 for
each 𝑒𝑗 with

one endpoint in 𝑉′

To get 2 × 10𝑗 for
all 𝑒𝑗, plus 10𝑚 for

each node

Case 1: Suppose 𝐼 is a yes-instance of Vertex-Cover.

Contains node ints Contains edge ints
both endpoints in 𝑉′one endpoint in 𝑉′

ints

ints

ints

2023-11-29

6

• We show 𝐼 is a yes-instance of Vertex-Cover

• Since 𝑓(𝐼) is a yes-instance, there exists 𝐴′ ∪ 𝐵′ that sums to 𝑊

• where 𝐴′ contains node ints and 𝐵′ contains edge ints

• Define 𝑉′ = 𝑣𝑖 ∶ 𝑎𝑖 ∈ 𝐴′ . We claim 𝑉′ is a vertex cover of size 𝑘.

• We must have 𝑉′ = 𝑘 for the coefficient of 10𝑚 to be 𝑘 (no carrying)

• Suppose (for contra.) 𝑉′ does not cover some edge 𝑒𝑗 = (𝑢, 𝑣)

• Then the coefficient of 10𝑗 is zero for every 𝑎𝑖 ∈ 𝐴′

• But the coefficient of 10𝑗 is 2, so a subset of 𝐵′ must sum to 2 × 10𝑗

• But this is impossible (so 𝑒𝑗 is covered, so all edges are covered)

Case 2: Suppose 𝑓(𝐼) is a yes-instance of Subset Sum. Complexity of the transformation:

Easy! Included for your notes.

Trivial to compute all 𝑏𝑗 in 𝑂(𝑚) time

Compute 𝑎𝑖 by visiting all

incident edges. Trivial algorithm

yields 𝑂(𝑚) time for each 𝑎𝑖 ,

totaling 𝑂(𝑛𝑚) over all 𝑖

Assume adjacency matrix and

unit cost model for simplicity

Compute 𝐶 with trivial

algorithm in 𝑂(𝑛𝑚) time

Trivial to compute 𝑊 in 𝑂(𝑚) time

Total 𝑂(𝑛𝑚) time. This is polynomial

in the input graph size!

Every problem in NP

can be poly transformed to

can be poly transformed to

Technically need to also show SubsetSum with
target T is in NP (exercise) to know it is in NPC

IS 2-SAT ALSO HARD?
(IF WE HAVE TIME – VERY UNLIKELY)

34

2-SAT EXAMPLES

• 𝑝 ∨ 𝑞 ∧ ¬𝑝 ∨ 𝑟 ∧ ¬𝑟 ∨ ¬𝑝

• Satisfiable: 𝑝 = 0, 𝑞 = 1, 𝑟 ∈ {0,1}

• 𝑝 ∨ 𝑞 ∧ ¬𝑝 ∨ 𝑟 ∧ ¬𝑟 ∨ ¬𝑝 ∧ 𝑝 ∨ ¬𝑞

¬𝑝 ⇒ 𝑞

¬𝑞 ⇒ 𝑝

𝑝 ⇒ 𝑟

¬𝑟 ⇒ ¬𝑝

𝑟 ⇒ ¬𝑝

𝑝 ⇒ ¬𝑟

¬𝑝 ⇒ ¬𝑞

𝑞 ⇒ 𝑝

𝑝

¬𝑝

𝑞

¬𝑞

𝑟

¬𝑟

Edges (implications of clauses)…
𝒑

¬𝒑

𝒒

¬𝒒 ¬𝒓

𝑞 ⇒ 𝑝 ⇒ ¬𝑟 ⇒ ¬𝑝 ⇒ ¬𝑞 … so 𝑞 cannot be 𝑡𝑟𝑢𝑒

Therefore the formula cannot be satisfied!

𝒑

¬𝒑

𝒒

¬𝒒 ¬𝒓 ¬𝑞 ⇒ 𝑝 ⇒ ¬𝑟 ⇒ ¬𝑝 ⇒ 𝑞 … so 𝑞 cannot be 𝑓𝑎𝑙𝑠𝑒

Logical refresher:
𝑝 ⇒ 𝑞 is equivalent to

¬𝑝 ∨ 𝑞.

Therefore, 𝑝 ∨ 𝑞 is
equivalent to ¬𝑝 ⇒ 𝑞 and

equivalent to ¬𝑞 ⇒ 𝑝

35

2-SAT
2-SAT 𝑿 = {𝟏. . 𝑿 }

(variable names are
integers in 1..|X|)

Suppose no variable 𝑥 is in the same SCC as ҧ𝑥, then to get a satisfying
assignment do the following:

For each 𝑥, if ∃ path from 𝑥 to ҧ𝑥, then set 𝑥 = 𝑓𝑎𝑙𝑠𝑒 else set 𝑥 = 𝑡𝑟𝑢𝑒.

36

2023-11-29

7

BONUS SLIDES

37

SUMMARY OF COMPLEXITY CLASSES
• P (Poly-time)

• Decision problems that can be solved by algorithms with runtime poly(input size)

• NP (Non-deterministic poly-time)

• Decision problems for which certificates can be verified in time poly(input size)

• Equivalently: decision problems that can be solved in poly-time if you have access
to a non-deterministic oracle that returns a yes-certificate if one exists

• NPC (NP-complete)

• Decision problems Π ∈ 𝑵𝑷 s.t. every Π′ ∈ 𝑁𝑃 can be transformed to Π in poly-time

• NP-hard (at least as hard as NPC)

• problems Π s.t. every Π′ ∈ 𝑁𝑃 can be reduced to Π in poly-time

• Note: P, NP and NPC problems are decidable

E.g., (decision problem variants of:) BFS, Dijkstra’s, some DP algorithms

E.g., vertex cover, clique, SAT, subset sum, TSP-decision

All of P, and e.g.,, vertex cover, clique, SAT, subset sum

All of NPC, and e.g., TSP-optimization, TSP-optimal value

See this slide’s notes

38

39

Found this neat
image online

