2023-11-29

LAST TIME

Polynomial transformations
Poly transformation from Clique to Vertex Cover

NP Completeness
CS 341: ALGORITHMS SATis NP complete (NPC)
Lecture 22: intractability V - More NPC transformations

Got part way through showing 3SAT is NPC
Did poly fransformation from SAT to 3SAT

Trevor Brown Need to also show 3SAT is in NP
https://student.cs.uwaterloo.ca/~cs341

Readings: see website

trevor.brown@uwaterloo.ca

COMPLEXITY CLASS NP-COMPLETE (NPC)

The complexity class NPC denotes the set of all decision problems IT that
satisfy the following two properties:

1€ NP I]\Ac?sﬁhanirIC§ gf ﬁlr:ving I € NPC
- ' - . Show ITis in
Forall I e NP, IT' <p II 2. Show a poly transformation
NPC is an abbreviation for NP-complete. from some NPC problem to 1l

Note that the definition does not imply that NP-complete problems exist!
LET'S DO A BRIEF REVIEW

of NPC, poly transformations, and showing a problem is in NP

MECHANICS OF SHOWING A PROBLEM IS IN NP POLYNOMIAL TRANSFORMATION
How to show I1 € NP FOR PROVING I, IS IN NPC
Define a yes-certificate L@’%w
Design a poly-time verify(l, C) algorithm P g —
Coreciness proof . I; <p I, iff there exists f : 3(I1;) - I(I1;) such that:
g::jeclg:ULfr: :hk?]ef ggrﬂ}/ye(i'gtgr;ff; f{) is computable in poly-time, for all I € 3(I1;)
Case 2: Let I be any no-instance, IF1 € Jyes(My) then £(I) € Tyes (1)

and € be any certificate;

If f(I) € J,5(113) then I € J,,(11;)
Prove verify(l,C) = false

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

LET'S FINISH SHOWING 3SAT € NPC

- Already poly transformed SAT to 3SAT
- Need fo show 3SAT in NP

MECHANICS OF SHOWING A PROBLEM IS IN NP

Define desired YES-certificate Let I be a yes-instance of 3SAT. Then
it has a satisfying assignment 4.
And, verify(l, A;) willsee that each
clause contains a literal satisfied by
this assignment, so verify wil see
numSat = |Clauses| and return true.

Design a poly-time verify(l, C) algorithm
Correctness proof
Case 1: Let I be any yes-instance;

Find € such that verify(l,C) = true
Case 2: Let I be any no-instance,

and € be any certificate;
Prove verify(l,C) = false

Suppose verify(l, C) retumns true.
Then numSat = |Clauses|, SO numSat was
incremented in each iteration of the loop
over clauses, so each clause contains a
satisfied literal, so the 3SAT formulain I is
satisfied by €, so I is a yes-instance.

Contrapositive of case 2:

Suppose verify(I,C) = true;

Prove [is a yes-instance It follows that 3SAT is in NP.

Since we have already shown SAT <, 3SAT,
we now know that 3SAT is NP-COMPLETE.

NP-HARDNESS

Intuitively: problems that are as NP-complete
(but are not necessarily decision problems)

2023-11-29

3SAT input I = (Clauses[1..m],n):
a listof m clauses, and the number n of variables.
Each clause contains literals. Each literal is a pair
Define desired YES-certificate (var, neg): a variable € {1..n} & a negation bit
) 5 3 YES-certificate ¢ = aray with one bit
Design a poly-time verify(l, C) algorithm per variable in {1..n} representing a

Correctness proof satisfying assignment

PROVING 3SAT IS IN NP

verify3sAT(I-(Clauses(1 .n], n), €)
€ i3 net an array of n bits return false

Case 1: Let I be any yes-instance;
Find € such that verify(1,C) = true

1
2
3
4
5
Case 2: Let I be any no-instance, g i Gt b Lo s
8
9
8
1

nunSat - ¢
for each ¢ in Clauses

3 (Clvar] & ‘nag) or (IClvar] & neg)
and € be any certificate; nussat
Prove verify(l,C) = false fre

Contrapositive of case 2:
Suppose verify(l,C) = true;
Prove I is a yes-instance

return (numsat — m)

This takes O(|Clauses|) time, whichis
polynomialin Size(I)

Summary of Polynomial Transformations
Every problem in NP

n be poly transformed to

| can be poly fransformed to

3-SAT Since SAT is NP-complete,
50 is 3-SAT!

Today and next time let's start filling out a
hierarchy of reductions that prove several
problems are NP complete

But first, since you need to know NP hardness
for your assignment...

NP-hard Problems

This versionreturns the
total weight of an optimal

TSP-Optimal Value is also
NP-hard (and not in NP)
Hamiltonian cycle

A problem II is NP-hard if there exists a problem II' € NPC such that
<L

Every NP-complete problem is automatically NP-hard, but there exist
NP-hard problems that are not NP-complete.

Typical examples of NP-hard problems are optimization problems
corresponding to NP-complete decision problems. Reduction from lecture 19/20
For example, [TSP-D <7 TSP-Optimi and TSP-Decision

€ NPC, so TSP-Optimization is NP-hard.

Returns an optimal
Hamiltonian cycle

COMPARING NPC AND NP HARD

IT € NPC
Must be a decision problem
Must poly transform some NPC problem to T
Must show ITin NP
I1 € NPHard
Does not need to be a decision problem
Can use either poly transform or poly Turing reduction
Does not need to be in NP (and can't be if not decision)

13

SOME PROBLEMS IN EACH

TSP
optimization

SAT, TSP-
Decision

NP-Hard NP-Hard

7N

- Np,mi.h}_

e |

We think some stuff
may exist here, called
NP intermediate
problems... but we're
not sure

NP-Complate

SHOWING 3-SAT <p CLIQUE

Let I be an instance of 3-SAT with n variables x; ...x, and m clauses C; ...Cy,

Eg. Ve VI) A VX V) A Va3 Vas) A(X3Vx, V) [n=5m=4]
We construct Clique input f(I) = (G, k) :

Node v§ for each literal 1 < £ < 3in

each clause 1 < ¢ <m (so [V] = 3m)

Edges between all non-contradictory

pairs of nodes (no x; A ;) in different clauses

O
N7

X *

PRy I /A
W y.\@&» "
w"&?‘y‘@‘«‘

AV
AR
IR

< n

el
@ g:;\@’*@
PR

k =m (can we find an m-clique?)

Must prove this is a polynomial transformation

3-SATrep ion: array([1..m] of

create 3m nodes, 0(m?)
Note 0(m) < 0(Size(])). edges, at 0(1) time each

So runtime 0(m?) € 0(Size(1)?) & polytime!

clauses <ly, I, l3> of literals <v,neg> where v € {1..n}. ‘ ‘

17

2023-11-29

TWO POSSIBLE REALITIES...

WP-Hard NP-Hard
ﬂcom—ph / ™
: \ [

HE | HP-Complate \

N

ESTABLISHING ANOTHER NPC PROBLEM
... BY TRANSFORMING 3-SAT TO CLIQUE

(Proving 3-SAT <, Clique)

SHOWING 3-SAT <p CLIQUE
Let I be an instance of 3-SAT with n variables x; ...x, and m clauses (; ... Cy,

Eg. Gt VER V) AV Vas) ATV ag Vixs) A(Xs VXV Xs)

Case 1: Suppose I is a yes-instance of 3-SAT, @

and show f(I) is a yes-instance of m-clique
Since I is a yes-instance, 3 a satisfying assignment

NV/» 4\}{;
LV SR,
X2 6,

@’\L& s 'A?‘@.

:2\,4

Eg.x1=1 x=1, x3=1, x4,=0, x5=0

PN
\%:‘@)

% ?\m’é\
NN

< 7

For each clause C;, let s; be a satisfied literal in C;

Eg. s1=x;, S =X, S3=2X3, S4=0X5

Claim: the corresponding nodes form an m-clique
There are m of these nodes, each in a different clause
None of them represent contradictory truth assignments
So, there are edges between all pairs of them - they form an m-clique 4

SHOWING 3-SAT <p CLIQUE
Let I be an instance of 3-SAT with n variables x; ...x, and m clauses C; ... Cp,
Eg. (y VIR VIR A(@ Vay Vas) ARV Xz Vxs) A (X3 V xy VXs)

Case 2: Suppose f(I) is a yes-instance of m-clique, @
and show I is a yes-instance of 3-SAT \\WA

Since f(I) is a yes-instance, it contains an m-clique @‘\v\"
Clique contains edges between all pairs of nodes \‘i’,‘

There are no edges between nodes in same clause,
so clique contains one node from each clause

Set the corresponding literals to be satisfied

Clique contains no edges between contradictory literals
(i.e.. no edge connects x; and x; for any i)

So, truth assignment is consistent and satisfies each clause (and the formula)

Summary of Polynomial Transformations
Every problem in NP
SAT can be poly transformed to

!
3-SAT
+

Clique

REDUCING VERTEX-COVER TO SUBSET-SUM

(Proving Vertex-Cover <p Subset-Sum)

(if we have time)

2023-11-29

LAST STEP: SHOW CLIQUE IS IN NP
YES-certificate: array of k nodes forming a clique
Verify(1,C):
Check certificate is array of length k, containing vertex IDs
Check all-to-all edges to verify these vertices form a clique
0(k?) < 0(|V]?) runtime > polytime
Correctness: exercise! Need to prove:
if Iis a yes instance, verify returns yes, and
if verify returns yes then | is a yes instance

Summary of Polynomial Transformations
Every problem in NP

n be poly transformed to

1

1 This additional poly transformation was
Clique proved last class (CL to VC)!
4 We also need to show Vertex Cover is
Vertex Cover in NP. Exercise. ©

SUBSET-SUM (SLIGHTLY DIFFERENT FROM BEFORE)

Problem 7.18

Subset Sum

Instance: A fist of sizes S = [s1,...,s,); and a target sum, W. These
are all positive integers.

Question: Does there exist a subset J C {1,...,n} such that
Piessi=W?

Earlier, we defined Subset-Sum with a target sum of 0

Here we add a target sum T and take positive integers as input

Goal: transform instance I of VC into instance Idea: turn nodes and edges into a list of
(D) of SS (in poly time) such that I is a integers and a target sum W. Sum W should
yes-instance of VC iff (1) is a yes-instance of SS be achievable IFF there is a k-vertex cover.

Somehow want the array of integers to encode which edges are covered by various nodes,
and target sum fo encode that every edge is covered if W is achieved

Vertex Cover <p Subset Sum
Suppose I = (G, k), where G = (V, E), [V|=mn, |E| =mand | <k < n.

Suppose V = {v1,..., v} and E = {eo, ..., em_1}. For 1 <
0<j<m—1,let C = (e), where

Input to
Vertex Cover

Sort of like an adjacency
matrix, but instead of storing
which node-pairs are
adjacent, store which edges
are incident to each node

1 if e; is incident with v;
"0 otherwise

[«

= is edge j covered by node i?

Vertex Cover <p Subset Sum
Suppose I = (G, k), where G = (V,E), [V| =n, |[E| =mand 1 <k <n
Suppose V = {v1,...,va} and E = {eg, .

0<j<m~—1,let C=(e;), where

. _)1 ife;isincident with v
7710 otherwise

sem—1}. For1<i<m,

Each node becomes a
integerin the array:
10™ + the integers for all

Define n + m ints and a target sum W as follows: edges incident fo the node

a; lu”v-xm,ll)’ (1<i<n)

b = 10 (0<j<m—1)

Each edge becomes a
unique integerin the array:
edge ¢; becomes 10/

e U e g
=1 -
by =10 +10™ means the integer for
| e i igh
ay = 100011 by = 100 a node is at least one digit
az = 1010 by = 1000 longer than the integers for
T Iy = 10000 all edges

All 5 edges
counted
twice

EXAMPLE e et

— e | Edge eq
m 00011

Looking for
2 nodes

Is there a 2-VC?2 Use Yubget sum
fo search for W = 222222

Subset sum looks for a subset of
{ay, a3 a3,a4,as,bo, by, ba, b3, ba}
that sums to W

000
000

Sum of edge sizes
incident to vy, plus 10m

It finds W = ap + az + by + by + b + by

a; +a =211211

4 = 1000
by = 10000

Edge e, counted twice, other
edges once. Sum uses by, by, bs, by
fo get all to be counted twice.

az +ag+ bo + by + by + by

Other digifs are in [0,3]. An
edge is definitely covered by
a node if its digit is 2.

9 —

2023-11-29

Vertex Cover <p Subset Sum

Suppose I = (G

where G = (V,E), [V| =n, |[E| =mand 1 <k <n

Suppose V = {vy,...,v.} and E = {eq,...,em—1}. For 1 <i<m,
0<j<m~—1,let C=(c;), where

__J1 if e is incident with v

7710 otherwise

Define 1 + mt ints and a target sum W as follows

Each edge becomes a
unique integerin the aray:
edge e; becomes 107

by = W0 (0<j<m—-1)

=1
b =10
by = 100
by = 1000

by = 10000

Vertex Cover <p Subset Sum
Suppose I = (G, k), where G = (V,E), V| =n, |E| =mand 1 <k <n

Suppose V = {vy,...,v,} and E = {eq,...,em1}. For 1 <i<m,
0<j<m-=1,let C=(c), where
Why twice? Ifboth 1 if e; is incident with v; Each node becomes a
endpoints of e; are Cij 5 integerin the array:
. 0 otherwise
in the vertex cover,

10™ + the integers for all

itis counted twice. |ints and a target sum W as follows edges incident to the node

Otherwise once, m—1
and can add b;. a = 10™+4 Zw,‘m‘ (1<

<i<n)

This target weight

asks for k nodes
and for all edges to
be included twice

Each edge becomes a
unique integerin the array:
edge e; becomes 10/

by W (0<;j<m-1)

m—1

W = k10" +

Then define f(I) = (ay, ..., apy by, -, b1, W)

Correctness of the Transformation
Case 1: Suppose [is a yes-instance of Vertex-Cover. | There is a vertex cover
7TC V such that V1] — k. For i — 1,2, let I* denote the edges having
exactly i vertices in V7. Then E because V' is a vertex cover.

JE?
Let one endpointin V” both endpointsin V'

Contains node ints A ={a; v, € V'} and B = {b; : e; € E'}.—]_Contains edgeints
The sum of the ints in A’ is

¢j has one endpointin V', | . g 10 4
so nodesin V' confribute
1x10/ fow

The sum of the infs in B is

¢; has both endpoints in v’,

o so nodesin V' confribute
rescE'} 2x10tow

Add another 1 x/ to W for
each ¢; with
one endpointin V'

109
{ieselt)

Therefore the sum of all the chosen ints is

To get2 x 10/ for
all e;, plus 10™ for

B0 3 2000 = k- 107 + dachnode

{iteseE}

1 =w.

Case 2: Suppose f(I) is a yes-instance of Subset Sum.

We show I is a yes-instance of Vertex-Cover

Since f(I) is a yes-instance, there exists A’ U B’ that sums to W
where A’ contains node ints and B’ contains edge ints

Define V' = {v; : a; € A'}. We claim V' is a vertex cover of size k.
We must have |V'| = k for the coefficient of 10™ to be k (no carrying)
Suppose (for contra.) V' does not cover some edge e; = (u,v)
Then the coefficient of 10/ is zero for every a; € A’
But the coefficient of 107 is 2, so a subset of B’ must sum to 2 x 10/
But this is impossible (so e; is covered, so all edges are covered)

Summary of Polynomial Transformations
Every problem in NP
CNF-SAT —<an be poly transformed to
| can be poly transformed to
3-CNF-SAT
|
Clique

Vertex Cover

Subset Sum
Technically need to also show SubsetSum with
target Tis in NP (exercise) to know it is in NPC

2-SAT EXAMPLES e —
@V APV A(rv-p) P
Satisfiable:p = 0,q = 1,7 € {0,1}
PVOA(=pVI)A(=rvV=p) AV —q)

Edges (implications of clauses)...

Therefore,pv qis
equivalent to —p = g and
equivalentto ~g = p

Co=o)= = =]

[a=r =]l J[a=r]

l q=p=-r=-p=-q..50qcannot be true]

l ¢ =p=-r=-p=q..50q cannotf be false]

l Therefore the formula cannot be satisfied! l

2023-11-29

Ci ity of the
Easy! Included for your notes.

Vertex Cover <, Subset Sum

Suppose I = (G, k), where G = (V,E), |V| =n, |[E|=mand 1<k <n
Suppose V = {vy,....vn} and E'= {eg,... e} For 1<i<n, Assume adjacency matrix and
0<j<m~—1,let C=(c;), where

unit cost model for simplicity

{1 if e; is incident with v Compute ¢ with frivial
0 otherwise. algorithmin 0(nm) time

Define n + m sizes and a target sum W as follows:

Compute a; by visiting all
incident edges. Trivial algorithm
yields 0(m) time for each a;,
totaling 0(nm) over all i

\\ Trivial to compute all b; in 0(m) time l

<m-1)

W o= k-10m+ Y 2100

j=t Trivial to compute W in 0(m) time l
Then define f(I) = (a1, ... an,bo, ... b1, W)

Total 0(nm) time. This is polynomial
in the input graph size!

IS 2-SAT ALSO HARD?
(IF WE HAVE TIME - VERY UNLIKELY)

(variable names are
integersin 1..|X1)

2-SAT] can be solved in polynomial time. Suppose we are given an
instance 1 of[_2-SAT _Jon a set of boolean variables [X = 1..1X|

(1) For every clause = V y (where = and y are literals), construct two
directed edges 7y and Gz. We get a directed graph on vertex set X UX

(2) Determine the strongly connected components of this directed graph.

(3) I'is a yes-instance if and only if there is no strongly connected
component containing x and T, for any r € X.

Suppose no variable x is in the same SCC as &, then to get a saftisfying
assignment do the following:
For each x, if 3 path from x to %, then set x = false else set x = true.

35

3%

BONUS SLIDES

2023-11-29

SUMMARY OF COMPLEXITY CLASSES Lseeitisside'snofes

P (Poly-time) [E.g.. (decision problem variants of:) BFS, Dijkstra's, some DP algorithms]
Decision problems that can be solved by algorithms with runtime poly (input size)
NP (Non-deterministic poly-time) [_Allof P, and e.g.. vertexcover, clique, SAT, subsetsum _|

Decision problems for which certificates can be verified in time poly(input size)

Equivalently: decision problems that can be solved in poly-time if you have access
o a non-deterministic oracle that returns a yes-certificate if one exists

NPC (NP-complete) [_Eg. vertexcover, clique, SAT, subset sum, TsP-decision _|
Decision problems I1 € NP s.t. every II' € NP can be transformed to 11 in poly-time
NP-hard (at least as hard as NPC) [All of NPC, and e.g., TSP-optimization, TSP-optimal value]
problems I s.t. every I € NP can be reduced to I in poly-time

Note: P, NP and NPC problems are decidable

