
CS 341: ALGORITHMS
Lecture 3: divide & conquer II

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca


• A point dominates

everything to the southwest

PROBLEM: NON-DOMINATED POINTS

+𝑥

+𝑦

No other point 

dominates me

So, I am a

non-dominated point

2



MORE FORMALLY

• Given two points (𝑥1, 𝑦1) and (𝑥2, 𝑦2),

we say (𝑥1, 𝑦1) dominates (𝑥2, 𝑦2)
if 𝒙𝟏 > 𝒙𝟐 and 𝒚𝟏 > 𝒚𝟐

• Input: a set S of n points

with distinct x values

• Output: all non-dominated points in S,

i.e., all points in S that are

not dominated by any point in S

What’s an easy

(brute force)

algorithm for this?

+𝑥

+𝑦

3



BRUTE FORCE ALGORITHM

Let’s come up with a 

better algorithm

Running time?

(unit cost)
𝑶(𝒏𝟐)

4



+𝑥

+𝑦

5



PROBLEM DECOMPOSITION

+𝑥

+𝑦

1
4

3
5

7

8

6

2

11

10
13 15

9

14

16
12

6



+𝑥

+𝑦

1
4

3
5

7

8

6

2

11

10
13 15

9

14

16
12

PROBLEM DECOMPOSITION

𝑺𝟏

𝑺𝟐

7



8

PROBLEM DECOMPOSITION

+𝑥

+𝑦

1
4

3
5

6

2

7

𝑺𝟏

+𝑥

+𝑦

11

10
12 14

9

13

16

𝑺𝟐

8



PROBLEM DECOMPOSITION

8

+𝑥

+𝑦

1
4

3
5

6

2

7

𝑺𝟏

+𝑥

+𝑦

11

10
12 14

9

13

16

𝑺𝟐

9



COMBINING TO GET NON-DOMINATED POINTS

• Let 𝑄1, 𝑄2, … , 𝑄𝑘 be the non-dominated points in 𝑺𝟏

• Let 𝑅1, 𝑅2, … , 𝑅𝑚 be the non-dominated points in 𝑺𝟐

Just need to find rightmost 𝑸𝒊 that 

is not dominated

(that has 𝑦-coordinate ≥  𝑅1. 𝑦)

𝑆1 𝑆2

10



11



Running time complexity?

(unit cost model)

Θ(𝑛 log 𝑛)

𝑇(𝑛)

Θ(1)

Θ(1) or Θ 𝑛

𝑇
𝑛

2

𝑇
𝑛

2

Θ(1) or Θ(𝑛) depending on 

data structures…

either way doesn’t matter

So total for sort & recursion is 

Θ 𝑛 log 𝑛 + 𝑇(𝑛) = Θ(𝑛 log 𝑛)

𝑇 𝑛 = 2𝑇
𝑛

2
+ Θ 𝑛

Assume 𝑛 = 2𝑗 for simplicity

Same as merge sort 

recurrence: Θ 𝑛 log 𝑛

Θ(𝑛)

12



BONUS SLIDE: WHAT IF X VALUES ARE NOT DISTINCT?

• R might contain multiple points with the same x value but with 
different y values

• If there are points in Q with the same x as R[1], and a lower y, then 
the algorithm would say they are dominated by R[1]. Wrong!

• We can find all of the points with the same x as R[1] in linear time

• If there are multiple such points, and some are in Q, then they are 
not dominated by R[1], but might be dominated by the next 
element R[i] of R that has a different x

• So, we compare them with R[i].y (in linear time) instead of R[1].y

• All of the other points in Q with x different from R[1].x are compared 
with R[1].y as usual (in linear time)

13



MULTIPRECISION MULTIPLICATION

• Input: two 𝒌-bit positive integers X and Y

• With binary representations:

𝑋 = [𝑋[𝑘 − 1], … , 𝑋[0]]
𝑌 = [𝑌[𝑘 − 1], … , 𝑌[0]]

• Output: The 2𝑘-bit positive integer 𝑍 = 𝑋𝑌

• With binary representation: 𝑍 = [𝑍[2𝑘 − 1], … , 𝑍[0]]

14



1 0 1 0𝑿

𝑿[𝟑] 𝑿[𝟎]

1 0 1 1𝒀

BRUTE FORCE ALGORITHM

1 0 1 0

1 0 1 1times

0 0 0 0 1 0 1 0

0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0

• One row per digit of 𝑌

• For each row

copy the 𝑘 bits of 𝑋

• Add the 𝑘 rows together

• Θ(𝑘) binary additions 

of Θ(𝑘) bit numbers

• Total runtime is

𝚯 𝒌𝟐 bit operations

0 1 1 0 1 1 1 0𝒁

15



1 0 0 0

1 0 1 0𝑿 1 0 1 1𝒀

A DIVIDE-AND-CONQUER APPROACH

1 0𝑿𝑳 1 0𝑿𝑹
1 0𝒀𝑳

1 1𝒀𝑹

𝟐𝒌/𝟐𝑿𝑳
1 0+𝑿𝑹

1 0 1 0=𝑿

1 0 0 0𝟐𝒌/𝟐𝒀𝑳
1 1+𝒀𝑹

1 0 1 1=𝒀

k/2 bit 

shift!

16



EXPRESSING 𝒌-BIT MULT. AS 𝒌/𝟐-BIT MULT.

• 𝑋 = 2𝑘/2𝑋𝐿 + 𝑋𝑅 and 𝑌 = 2𝑘/2𝑌𝐿 + 𝑌𝑅

• So 𝑋𝑌 = (2𝑘/2𝑋𝐿 + 𝑋𝑅)(2𝑘/2𝑌𝐿 + 𝑌𝑅)

• = 2𝑘𝑋𝐿𝑌𝐿 + 2𝑘/2 𝑋𝐿𝑌𝑅 + 𝑋𝑅𝑌𝐿 + 𝑋𝑅𝑌𝑅

• Suggests a D&C approach…

• Divide into four 𝑘/2-bit multiplication subproblems

• Conquer with recursive calls

• Combine with 𝑘-bit addition and bit shifting

17



Recall: 𝑋𝑌 = 2𝑘𝑋𝐿𝑌𝐿 + 2𝑘/2 𝑋𝐿𝑌𝑅 + 𝑋𝑅𝑌𝐿 + 𝑋𝑅𝑌𝑅

18

Runtime?

(bit complexity model)



Θ(1)

Θ(log 𝑘) or Θ 𝑘

4𝑇
𝑘

2

Θ(𝑘)

• Assume 𝑘 = 2𝑗 for ease

• 𝑇 𝑘 = 4𝑇
𝑘

2
+ Θ(𝑘)

• Master theorem says 
𝑇 𝑘 ∈ Θ(𝑘log2 4) = Θ(𝑘2)

Same complexity as brute force!

Intuition: to get speedup, 

must reduce the number of 

subproblems or their size 19



• For millennia it was widely thought that 𝑂(𝑛2) multiplication 
was optimal.

• Then in 1960, the 23-year-old Russian mathematician Anatoly 
Karatsuba took a seminar led by Andrey Kolmogorov, one of the 
great mathematicians of the 20th century.

• Kolmogorov asserted that there was no general procedure for 
doing multiplication that required fewer than n2 steps.

• Karatsuba thought there was—and after a week of searching, he 
found it.

https://www.wired.com/story/mathematicians-

discover-the-perfect-way-to-multiply/
20



KARATSUBA’S ALGORITHM

• Let’s optimize from four subproblems to three

• Idea: compute 𝑿𝑳𝒀𝑹 + 𝑿𝑹𝒀𝑳 with only one multiplication

• Note 𝑿𝑳𝒀𝑹 + 𝑿𝑹𝒀𝑳 appears in (𝑿𝑳 + 𝑿𝑹)(𝒀𝑳 + 𝒀𝑹)

• 𝑿𝑳 + 𝑿𝑹 𝒀𝑳 + 𝒀𝑹 = 𝑿𝑳𝒀𝑳 + 𝑿𝑳𝒀𝑹 + 𝑿𝑹𝒀𝑳 + 𝑿𝑹𝒀𝑹

• Let 𝑋𝑇 = 𝑋𝐿 + 𝑋𝑅 and 𝑌𝑇 = 𝑌𝐿 + 𝑌𝑅

• Then 𝑿𝑳𝒀𝑹 + 𝑿𝑹𝒀𝑳 = 𝑿𝑻𝒀𝑻 − 𝑿𝑳𝒀𝑳 − 𝑿𝑹𝒀𝑹

• And the other two terms 𝑿𝑳𝒀𝑳 and 𝑿𝑹𝒀𝑹 are already in 𝑿𝒀

• So 𝑋𝑌 = 2𝑘𝑋𝐿𝑌𝐿 + 2𝑘/2 𝑋𝑇𝑌𝑇 − 𝑋𝐿𝑌𝐿 − 𝑋𝑅𝑌𝑅 + 𝑋𝑅𝑌𝑅

Recall: 𝑋𝑌 = 2𝑘𝑋𝐿𝑌𝐿 + 2𝑘/2 𝑿𝑳𝒀𝑹 + 𝑿𝑹𝒀𝑳 + 𝑋𝑅𝑌𝑅

Only three unique 

multiplications!
21



Running time complexity?Θ(1)

Θ(𝑘) *

3𝑇
𝑘

2

Θ(𝑘)

• 𝑇 𝑘 = 3𝑇
𝑘

2
+ Θ(𝑘) 

• Assume 𝑘 = 2𝑗 for ease

• Master theorem:

• 𝑎 = 3, 𝑏 = 2, 𝑦 = 1

• 𝑥 = log𝑏 𝑎 = log2 3

• 𝑇 𝑘 ∈ Θ 𝑘log2 3

• ≈ Θ 𝑘1.58

Input size increase by 10x 

causes runtime to 38x

Compare to Θ(𝑘2) algo:

10x input causes 100x time 22



23



Quoting Fürer, author of the 𝑶(𝒏 𝐥𝐨𝐠 𝒏 𝟐𝑶 𝐥𝐨𝐠∗ 𝒏 ) algorithm:

“It was kind of a general consensus that multiplication is such an important 
basic operation that, just from an aesthetic point of view, such an important 
operation requires a nice complexity bound…

From general experience the mathematics of basic things at the end always 
turns out to be elegant.”

24



And Harvey and van der Hoeven achieved O(n log n) in November 2020!
[https://hal.archives-ouvertes.fr/hal-02070778/document]

Their method is a refinement of the major work that came before them. It 
splits up digits, uses an improved version of the fast Fourier transform, and 
takes advantage of other advances made over the past 40 years. 

Lower bound of Ω(𝑛 log 𝑛) is conjectured.

A conditional proof is known…

it holds if a central conjecture in the area of network coding

turns out to be true. [https://arxiv.org/abs/1902.10935]

Unfortunately, simple complexity doesn’t 

always mean simple algorithm…

25



MATRIX MULTIPLICATION

• Input: A and B

• Output: their product C=AB

• Naïve algorithm for 𝑛 × 𝑛 matrices:

• For each output cell 𝑪𝒊𝒋

𝐶𝑖𝑗 = 𝐷𝑜𝑡𝑃𝑟𝑜𝑑(𝑟𝑜𝑤𝑖(𝐴), 𝑐𝑜𝑙𝑗 𝐵 𝑇)

= ෍

𝑘=1

𝑛

𝐴𝑖𝑘𝐵𝑘𝑗

• Running time (unit cost)?

26



ATTEMPTING A BETTER SOLUTION

• What if we first partition the matrix into sub-matrices

• Then divide and conquer on the sub-matrices

• Example of partitioning: 4x4 matrix into four 2x2 matrices

𝑎 𝑏
𝑐 𝑑

=

𝑎11 𝑎12

𝑎21 𝑎22

𝑏11 𝑏12

𝑏21 𝑏22

𝑐11 𝑐12

𝑐21 𝑐22

𝑑11 𝑑12

𝑑21 𝑑22

27



MULTIPLYING PARTITIONED MATRICES

Let A =
𝑎 𝑏
𝑐 𝑑

=

𝑎11 𝑎12

𝑎21 𝑎22

𝑏11 𝑏12

𝑏21 𝑏22

𝑐11 𝑐12

𝑐21 𝑐22

𝑑11 𝑑12

𝑑21 𝑑22

Let B =
𝑒 𝑓
𝑔 ℎ

=

𝑒11 𝑒12

𝑒21 𝑒22

𝑓11 𝑓12

𝑓21 𝑓22

𝑔11 𝑔12

𝑔21 𝑔22

ℎ11 ℎ12

ℎ21 ℎ22

Note 𝐶 = 𝐴𝐵 =
𝑎 𝑏
𝑐 𝑑

𝑒 𝑓
𝑔 ℎ

where 𝒂, 𝒃, … , 𝒉 are matrices

28



IDENTIFYING SUBPROBLEMS TO SOLVE

𝐶 = 𝐴𝐵 =
𝑎 𝑏
𝑐 𝑑

𝑒 𝑓
𝑔 ℎ

=
𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ

𝐶 = 𝐴𝐵 =
𝑎 𝑏
𝑐 𝑑

𝑒 𝑓
𝑔 ℎ

=
𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ

𝐶 = 𝐴𝐵 =
𝑎 𝑏
𝑐 𝑑

𝑒 𝑓
𝑔 ℎ

=
𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ

𝐶 = 𝐴𝐵 =
𝑎 𝑏
𝑐 𝑑

𝑒 𝑓
𝑔 ℎ

=
𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ

Recall 𝒂𝒆, 𝒃𝒈, etc., each represent matrix multiplication!

Can compute 𝑪 using 8 matrix multiplications
29



SIZE OF SUBPROBLEMS & SUBSOLUTIONS

𝐴𝐵 =
𝑎 𝑏
𝑐 𝑑

𝑒 𝑓
𝑔 ℎ

=
𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ

= 𝑪 =
𝒓 𝒔
𝒕 𝒖

• Suppose 𝐴, 𝐵 are 𝑛 × 𝑛 matrices

• For simplicity assume 𝑛 is a power of 2

• Then 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑟, 𝑠, 𝑡, 𝑢 are 
𝑛

2
×

𝑛

2
matrices

• So we compute 𝐶 with 8 multiplications of 
𝑛

2
×

𝑛

2
matrices

• (and 4 additions of such matrices)

30



Time complexity (unit cost)?

• 𝑇 𝑛 = 8𝑇
𝑛

2
+ Θ(𝑛2)

• Master theorem

• 𝑎 = 8, 𝑏 = 2, 𝑦 = 2

• 𝑥 = log2 8 = 3

• 𝑥 > 𝑦 so 𝑻 𝒏 ∈ 𝚯(𝒏𝟑)

• Same time as brute force!

Θ(1)

Θ 1  or Θ(𝑛2)

8𝑇
𝑛

2

Θ(𝑛2)

(recall A, B have 

𝑛2 entries)

31



STRASSEN FAST MATRIX MULTIPLICATION ALGORITHM

𝐴𝐵 =
𝑎 𝑏
𝑐 𝑑

𝑒 𝑓
𝑔 ℎ

=
𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ

= 𝑪 =
𝒓 𝒔
𝒕 𝒖

Define

Each 𝑃𝑖 requires one multiplication

Can combine these 𝑃𝑖 terms with +/-

to compute 𝑟, 𝑠, 𝑡, 𝑢!

32

Key idea: get rid of one multiplication!



𝐴𝐵 =
𝑎 𝑏
𝑐 𝑑

𝑒 𝑓
𝑔 ℎ

=
𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ

= 𝑪 =
𝒓 𝒔
𝒕 𝒖

Claim

Define

STRASSEN FAST MATRIX MULTIPLICATION ALGORITHM

• As an example, according to Strassen, 𝒕 = 𝑷𝟑 + 𝑷𝟒

• Plugging in 𝑃3, 𝑃4, we get 𝒕 = 𝒄 + 𝒅 𝒆 + 𝒅(𝒈 − 𝒆)

• This simplifies to 𝒕 = 𝒄𝒆 + 𝒅𝒆 + 𝒅𝒈 − 𝒅𝒆 = 𝒄𝒆 + 𝒅𝒈

33



Source: https://www.computer.org/csdl/journal/td/2002/11/l1105/13rRUxAASVu
34

https://www.computer.org/csdl/journal/td/2002/11/l1105/13rRUxAASVu


35



Running time complexity?

• 𝑇 𝑛 = 7𝑇
𝑛

2
+ Θ(𝑛2)

• Master theorem

• 𝑎 = 7, 𝑏 = 2, 𝑦 = 2

• 𝑥 = log2 7

• 𝑥 > 𝑦 so 𝑇 𝑛 ∈ Θ 𝑛𝑥

• 𝑇 𝑛 ∈ 𝚯 𝒏𝐥𝐨𝐠𝟐 𝟕 ≈ Θ 𝑛2.81

Θ(1)

Θ(1) or Θ 𝑛2

7𝑇
𝑛

2

Θ(𝑛2)

36



How much better is 

Θ(𝑛2.81) than Θ(𝑛3)?

Let n=10,000

𝑛2.81 ≈ 174 billion

𝑛3 = 1 trillion (~6x more)

How much better is 

Θ(𝑛2.376) than Θ(𝑛3)?

Let n=10,000

𝑛2.376 ≈ 3.2 billion

𝑛3 = 1 trillion (~312x)

37


