CS 341: ALGORITHMS

Lecture 3: divide & conquer Il

Readings: see website

Trevor Brown

hittps://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

PROBLEM: NON-DOMINATED POINTS

* A point dominates

everything to the southwest
+y '

MORE FORMALLY

» Given two points (x;, y1) and (x5, ¥).
we say (xq,y;) dominates (x,,y,)
ifx1 > X9 Qnd Y1 > Yo

* Input: a set S of n points
with distinct x values

« QOutput: all non-dominated points in S,
l.e., dll points in S that are

What's an easy

. SR brute force
not dominated by any point in S O|g(omhm for ﬂlig?

BRUTE FORCE ALGORITHM

NDPoints(S)
for p in S
dominated[p] = false
for g in S
if g '= p and q.x > p.x and q.y > p.y
| dominated[p] = true
if not dominated|[p]
print p

co Oy B WN—

Running time? Let's come up with a

better algorithm

(unit cost)

Observe that the non-dominated points form a staircase and all the other
points are “under’ this staircase.

The of the staircase are determined by the y-co-ordinates of the
non-dominated points. The of the staircase are determined by the

x-co-ordinates of the non-dominated points. The staircase descends from
left to right.

PROBLEM DECOMPOSITION

Suppose we the points in S with respect to their z-co-ordinates.
This takes time ©(nlogn).

PROBLEM DECOMPOSITION

Let the first n/2 points be denoted S; and let the last n/2 points
be denoted 55.

PROBLEM DECOMPOSITION

Recursively solve the subproblems defined by the two instances

S1 and Ss.

PROBLEM DECOMPOSITION

Given the non-dominated points in S; and the non-dominated
points in Sy, how do we find the non-dominated points in S?

Observe that

Therefore we only need to eliminate the points in S that are dominated
by a point in Sy. It turns out that this can be done in time O(n).

COMBINING TO GET NON-DOMINATED POINTS

e let Q,0,,...,0, be the non-dominated points in §4
* Let Ry, R,, ..., R, De the non-dominated points in S,

Just need to find rightmost Q; that
is not dominated
(that has y-coordinate > R;.y)

‘ Ry
\ J | J

10

1
2
3
4
)
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

NDPoints(S[1..n])
sort S by x-coord
recurse(S)

Recurse(S[1..n]) // precondition: S sorted by x
// base case
if n == 1 then return S

// divide
S1 = S[1..floor(n/2)]

Y S[floor(n/2)+1..n]

// conguer

Q[1..q] = Recurse(S1)

R[1..r] = Recurse(S2)

// combine

i =1

while i <= q and Q[i].y >= R[1].y

1++

// postcondition: return sorted by x

return concat(Q[1..1-1], R)
11

1
2
3
i
)
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

NDPoints(S[1..n])
sort S by x-coord

recurse(S) ‘

Recurse(S[1..n]) // precondition: S
// base case
if n == 1 then return S

// divide
S1 = S[1..floor(n/2)]

S2 S[floor(n/2)+1..n]
// conquer

Q[1..9] = Recurse(S1)
R[1..r] = Recurse(S2)

// combine
i=1

Running time complexity?

(unit cost model)

sorted by x

Ewhile i <= q and Q[i].y >= R[1].y '

1++

// postcondition: return sorted
return concat(Q[1..1-1], R)

_
12

BONUS SLIDE: WHAT IF X VALUES ARE NOT DISTINCT?

R might contain multiple points with the same x value but with
different y values

If there are points iIn Q with the same x as R[1], and a lower y, then
the algorithm would say they are dominated by R[1]. Wrong!

We can find all of the points with the same x as R[1] in linear fime

If there are multiple such points, and some are in Q, then they are
not dominated by R[1], but might be dominated by the next
element R[i] of R that has a different x

So, we compare them with RJi].y (in linear fime) instead of R[1].y

All of the other points in Q with x different from R[1].x are compared
with R[1].y as usual (in linear fime)

13

MULTIPRECISION MULTIPLICATION

* Input: two k-bit positive integers X and Y

« With binary representations:
X = [X[k — 1], ..., X[0]]
Y = [Y[k —1],...,Y][0]]

» Qutput: The 2k-bit positive infeger Z = XY
« With binary representation: Z = [Z[2k — 1], ..., Z[0]]

Here, we are interested in the of algorithms that solve

, which means that the complexity is
expressed as a function of k (the size of the problem instance is 2k bits).

14

BRUTE FORCE ALGORITHM

-

3

1

Y| 10| 1|1

T T 7 o « One row perdigitof Y
times H OHT W1l - Foreachrow

ST T o copy the k bits of X

1|0 « Add the k rows together

O|O]|]O|O

- 10|]0O|0O

o|jlo|O|O
- 10— |O
o|jlo|jo|—

0
* O(k) binary additions

of 8(k) bit numbers

» Total runtime is
®(k?) bit operations

15

A DIVIDECAND-CONQUER APPROACH

Let X}, be the integer formed by the k£/2 high-order bits of X and let Xg
be the integer formed by the k/2 low-order bits of X.

Similarly for Y.

X[Jol1]o] v 1fof[1]1]
x, oY x, [0} y, oo y, O

Thus

w

X =22X, + Xp and Y =22y, L Y5
k/2
KRS

DL B

+Yp

=y o]
16

+Xp

=x[Aol 7]0o]

EXPRESSING k-BIT MULT. AS k/2-BIT MULT.

o X =2F2X, + Xp ond Y =282y, + ¥,
» SO XY = (2%2X; + Xp)(2%/2Y, + YR)
o = 28X, Y, + 22X Yo F Xp Yo)+ Xn Y
» Suggests a D&C approach...
 Divide info four k/2-bit multiplication subproblems

« Conquer with recursive calls
« Combine with k-bit addition and bit shifting

17

1 DnCMultiply(X, Y, k)

2 // base case

3 if k == 1 then return [[X[0]*Y[0]]]

4

5 // divide

6 XR = X[0..k/2-1] .

7 XL = X[k/2..k-1] Runtime?¢
8 YR = Y[O..k/2-1] . .

; AL = Vi] (bit complexity model)
10

11 // conquer

12 XLYL = DnCMultiply(XL, YL, k/2)

13 XRYR = DnCMultiply(XR, YR, k/2)

14 XLYR = DnCMultiply(XL, YR, k/2)

15 XRYL = DnCMultiply(XR, YL, k/2)

16

17 // combine

18 return (XLYL<<k) + (XLYR+XRYL)<<(k/2) + XRYR

Recall: XY = 28X, Y, + 2%/2(X, Vs + XpY;) + Xp Vs

18

o~ Ol B WN =

—_ = =)) e e e —d e
co~NOUl B WN—=OW

DnCMultiply(X, Y, k)
// base case o)
if k == 1 then return [[X[0]*Y[0]1]

// divide O(logk) or 0(k)
XR = X[0..k/2-1]

XL = X[k/2..k-1]

YR = Y[O0..k/2-1] I

YL = Y[k/2..k-1] 4T(§)

// conquer

XLYL = DnCMultiply(XL, YL, k/2)
XRYR = DnCMultiply(XR, YR, k/2)
XLYR = DnCMultiply(XL, YR, k/2)
XRYL = DnCMultiply(XR, YL, k/2)

// combine 0(k)
return (XLYL<<k) + (XLYR+XRYL)<<(k/2) + XRYR

Intuition: fo get speedup,

must reduce the number of
subproblems or their size

e Assume k = 2J for ease
+ T(k) = 4T (5) + 6(k)

* Master theorem says
T(k) € O(k'°82%4) = O(k?)

Same complexity as brute forcel

Expectation vs Reality

For millennia it was widely thought that O(n?) multiplication
was optimal.

Then in 1960, the 23-year-old Russian mathematician Anatoly
Karatsuba took a seminar led by Andrey Kolmogorov, one of the
great mathematicians of the 20th century.

Kolmogorov asserted that there was no general procedure for
doing multiplication that required fewer than n? steps.

Karatsuba thought there was—and after a week of searching, he
found it.

hitps://www.wired.com/story/mathematicians-

discover-the-perfect-way-to-multiply/ 20

KARATSUBA'S ALGORITHM

» Let’s optimize from four subproblems to three

Recall: XY = 28X, Y, + 2%/2(X,Vp + XpV ;) + XpYe

» |[dea: compute X;Yr + XpY; with only one multiplication
 Note X, Yy + XgpY; appears in (X; + Xg)(¥Y; +Yp)

S, G R T T N i e i O e o

e let X=X, + Xpgand Y=Y, + Y,

» Then X Yp + Xp¥; = X;Yr — X;¥; — XgYp

 And the other two terms X;Y; and X,Y are already in XY

e SO XY =2FX, Y, + 2%2(X Ve — X, Yy — XpYr) + Xp Y FOANinree unique

multiplications!
21

1 KaratsubaMultiply(X, Y, k) Runnina tim molexity?2
2 // base case o(1) V g lime compliexitys
3 if k == 1 then return [[X[O0]*Y[0]]] k
4 . T(k) =37 (5) + 0 (k)
5 // lelde @(k)* 2
6 XR = X[0..k/2-1] Y
. XL = X[K/2. . K-1] Assume k = 27 for ease
8 YR = Y[O..k/2-1] .
5 YL = Y[K/? . k1] Master theorem:
10 XT = XL + XR a=3b=2y=1
11 YT = YL + YR I ' '
y n(t) o8y a = log, 3
2 X =10 a=10
13 // conquer &b 52
14 XLYL = KaratsubaMultiply(XL, YL, k/2) T(k) € ©(k'°823)
15 XRYR = KaratsubaMultiply(XR, YR, k/2)
16 XTYT = KaratsubaMultiply(XT, YT, k/2) - @(k1'58)
17
18 // combine 00
19 return (XLYL<<k) + ((XTYT - XLYL - XRYR)<<(k/2)) + XRYR

Input size increase by 10x Compare to 0(k?) algo:
causes runtfime to 38x 10x input causes 100x time 22

Note that X + Xg and Y, 4+ Yr could be (k/2 + 1)-bit integers.
However, computation of Z3 can be accomplished by multiplying
(k/2)-bit integers and accounting for by extra additions.

Various techniques can be used to handle the case when & is not a power
of two. One possible solution is to pad with zeroes on the left. So let m
be the smallest power of two that is > k. The complexity is ©(m/!°823).

Since m < 2k the complexity is O((2k)'°823) = O(3k!°823) = O(k'°823).
There are further improvements known:

e The splits X and Y into three equal parts and uses

five multipliations of (k/3)-bit integers. The recurrence is
T(k) = 5T(k/3) + ©(k), and then T'(k) € O(k'°825) = O(k147).

e The 1971 (based on FFT) has complexity
O(nlognloglogn).
e The 2007 has complexity O(n log n20Uos™ 7)),

23

Quoting Firer, author of the O(nlogn 22198 M) 3igorithm:
“It was kind of a general consensus that multiplication is such an important
basic operation that, just from an aesthetic point of view, such an important

operation requires a nice complexity bound...

From general experience the mathematics of basic things at the end always
turns out to be elegant.”

24

And Harvey and van der Hoeven achieved O(n log n) in November 2020!
[https://hal.archives-ouvertes.fr/hal-02070778/document]

Their method is a refinement of the major work that came before them. It
splits up digits, uses an improved version of the fast Fourier transform, and
takes advantage of other advances made over the past 40 years.

Unfortunately, simple complexity doesn’t
always mean simple algorithm...

Lower bound of Q(nlogn) is conjectured.

A conditional proof is known...
It holds it a central conjecture in the area of network coding
turns out to be frue. [https://arxiv.org/abs/1902.10935]

25

MATRIX MULTIPLICATION

Input: A and B
Output: their product C=AB
Naive algorithm for n X n maftrices:

For each oufput cell C;;
C;j = DotProd(row;(4),coli(B)")

n
= z AjrBy;
k=1

Running fime (unit cost)?

ail

ai2

a1

a22

a3l

a32

a41

42

b12

b13

b22

ba3

................

~ | a11b12 + a12b22

...........

nnnnnnnnnnnnnn

[~~~

a31b13 + as2b23

26

ATTEMPTING A BETTER SOLUTION

« What if we first partition the matrix info sub-matrices
* Then divide and conquer on the sub-matrices
« Example of partitioning: 4x4 matrix into four 2x2 maftrices

[a bl %21 Q22| by; by
£ 8 Ci11 €12 | di7 dqz

27

MULTIPLYING PARTITIONED MATRICES

Q11 Q12 | b1y byy

i R S
Le’rA—[C a1 =

g €21 €22 | fo1 [
Let B = [=

g h 11 Y12 h11 h12
921 Y922 | hyy hysyl

Note C = AB = [a b] [e f] where a, b, ..., h are matrices
c dilg h

28

c-a-EAR I - EHE

DENTIFYING SUBPROBLEMS TO SOLVE

_[ae+bg af + bh _[ae+bg |af+bh'
lce+dg cf +dh ~lce+dg cf +dh]
i _abef] = _’ab'[eTI
C—AB—_g ' C—AB—C 7lg |n
__[ae+bg af + bh _[ae+bg af + bh
_lce+dg cf + dh lce+dg [cf +dh

Recall ae, bg, etc., each represent matrix multiplication!

Can compute C using 8 matrix mulliplications

29

SIZE OF SUBPROBLEMS & SUBSOLUTIONS

=t 8l L [T]

« Suppose 4, B are n X n matrices
« For simplicity assume n is a power of 2

» Then a,b,c,d,e, f,g,h,1,5s,tuare % X % matrices

« SO we compute C with 8 mulfiplications of % X g maftrices

* (and 4 additions of such maftrices)

30

co~JoOyUu1 B WN =

N — — - -3 =3 =3 =3 =3 —3 -
OwooO~NOUTL A WN-—= 0OV

DnCMatrixMult(A, B, n)

//
if

[a,
[e,

//

return [[ae+bg, af+bh], [ce+dg, cf+dh]]

Time complexity (unit cost)e

base case 0(1) : 2 (2) 2
n == 1 then return [[A[0][0]*B[0][0]] i Fu):= BT (o}+0O(n%)
SRl O(1) or O(n?) (recall A, B have ° Master theorem
A S

b,c,d] = Part%t%on(A) o SIS e
f,g,h] = Partition(B)

n e x =1log,8 =3
conquer 8T(§) 3
= DnCMatrixMult(a, e, n/2) * x>ysoT(n) € BOn’)
) Bﬂgmggiﬁﬂﬂﬁgﬁ ;' 2;%; - Same time as brute force!
= DnCMatrixMult(b, h, n/2) {f &)
= DnCMatrixMult(c, e, n/2) »-g;.“é
= DnCMatrixMult(c, f, n/2) FEE R0
= DnCMatrixMult(d, g, n/2)
= DnCMatrixMult(d, h, n/2) o(n?)

combine (with *matrix* addition)

STRASSEN FAST MATRIX MULTIPLICATION ALGORIT

AB=[? Z”z {l::[ae+bg af+bh]=€='r s]

ce+dg cf +dh

T u

Key idea: get rid of one multiplication!

= (a+d)(e+ h) Ps = (b—
P7 = (a—c)(e+ f).

Each P; requires one multiplicat

Can combine these P; terms wit
to compute r,s, t, ul

P1—a(f h) Py = (a + b)h
= (c+ d)e Py =d(g—e)

d)(g + h)

lon

N +/-

32

STRASSEN FAST I\/\AT?IX MULTIPLICATION ALGORITHM
_a ae +bg af + bh S R
‘AB'_[][g h LB-ng qf%—dh] S t 1J
Py =a(f—h) (a+b)h
f% (c +d)e -& d(g —e)
= (a+d)(e+ h) Ps=(b—d)(g+h)
P7 = (a—c)(e+ f).
o =P+ Py — P+ B s=P+ P
t—P3+P4 u=FP+P —P3—F
* As an example, according to Strassen, t = P3 + Py
* Pluggingin P;,P,,we gett =(c+d)e+d(g — e)

e This simplifiestot =ce+ de+dg —de = ce + dg

33

Algorithm || Elts of A accessed to compute C' | Elts of B accessed to compute C
______] [HpRgiigiigiigiign gn
O OOoO0O0Ogn0OCc B Eginiiniind gl yn
v e I s HpRgiigiigiigiigngn
~~~~~~~~~ My Ngiigiigiighigh nn
e e e e el el e HpEgiigiigiigiign gn
——————— —_—— HpRgiigiigiigiign gn
bl fod fund bl b Lo fd e M Ey ARl inl inE InE NN

Standard | 00000 C 0 O OO0 D0 MmO
e I T O o s O i Bul b Ee |0 B kK OE |
=N T WE"TT HAEE S FIE IR I S I
w EHREM™NOOME Eel o % b B 1 %
= e O e e il 33 e 3 1 1 o 9
w =5 ™ — [ = — B0 (] L) B O 8 (I
o — e Zo oy o L&) 013 M &M (5
ol ] B B2 o ] B B E ol FEO'LORE M

Strassen | — wd == B &) B B RERERE: BRI I

Source: https://www.computer.org/csdl/journal/td/2002/11/11105/13rRUXAASVuU

34


https://www.computer.org/csdl/journal/td/2002/11/l1105/13rRUxAASVu

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

StrassenMatrixMult(A, B, n)

//
if

/7

base case
n == 1 then return [[A[O0][0]*B[0][0]]

divide Pﬁ_.(f h) Py = (a+b)h
)

b,c,d]
f,g.,h]

Partition(A)
Partition(B)

C

=

= (a +
P7 = (a
conguer
StrassenMatrixMult(a, f-h, n/2)
StrassenMatrixMult(a+b, h, n/2)
StrassenMatrixMult(c+d, e, n/2)
StrassenMatrixMult(d, g-e, n/2)
StrassenMatrixMult(a+d, e+h, n/2)
StrassenMatrixMult(b-d, g+h, n/2)
StrassenMatrixMult(a-c, e+f, n/2)

combine (with *matrix* addition)

return [[P5+P4-P2+P6, P1+P2],
~ [P3+P4, P5+P1-p3-p7]] =i thi-hrh 5=+ b

t=P3+ P,

_|_

d)e Py=d(g—
d)(e+h) Ps= (b—d)(g+h)
—c)(e+f)

u=Ps+ 35— P3 — P



1
2
3
4
)
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

//

e ase case
base case 0(1) Running time complexity¢

if

//

[a,
[e,

//
P1
P2
P3
P4
P5
P6
P7

//

n == then return [[A[O][0]1*B[0]1[0]]
+ T(n) = 77 (3) + 6(n?)

L - 0(1) or B(n?) 2
divide
b,c,d] = Partition(A)  Master theorem

= it 7 n

f,g,h] Partition(B) 7T(§) L
conquer o x =1log,7
= StrassenMatrixMult(a, f-h, n/2)
= StrassenMatrixMult(a+b, h, n/2) e x >vys0T(n) € 6(n
= StrassenMatrixMult(c+d, e, n/2)
= StrassenMatrixMult(d, g-e, n/2) * T(n) € @(nlogz 7) ~ 0(n*°%h)
= StrassenMatrixMult(a+d, e+h, n/2)
= StrassenMatrixMult(b-d, g+h, n/2)
= StrassenMatrixMult(a-c, e+f, n/2)
combine (with *matrix* addition)

return [[P5+P4-P2+P6, P1+P2],

[P3+P4, P5+P1-P3-P7]] o)

36



-

o o ..
OUOOOOOOOOOOOOOOOOOOOOOOOOO0 éoéoﬁ .
oooooocooooooooooooooo.oooooto-b-o-m ..

‘ o ° o ) .o.o.o.o.o.o.o.o.o.o.o.o'o.o.o.o .o .o .o .o.o. 0. .o 0 Q g *

Strassen s a/gonthm was |mproved in 1990 by Coppersmlth Wlnograd.
Their algorithm has complexity O(n?37%). Some slight improvements
have been found more recently.

37



