CS 341: ALGORITHMS

Lecture 5: finishing D&C, greedy algorithms |

Readings: see website

Trevor Brown

hittps://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

When someone near you
. |

THE CLOSEST PAIR
PROBLEM

THE CLOSEST PAIR PROBLEM

@ Input: Set P of n 2D points

€ Output: pair p and g s.t. dist(p, g) minimum over all pairs

@ Break ties arbitrarily

@ dist(p,q) =\ (p-x - q.x) +(p.y-q.y)

Can we Divide & Conquer?

& Like non- dommpated points: sort by x-axis & divide in half
260 '

I:i?4 p7 o
M

Ps |

v | v
L | R

Claim that doesn’t require a proof: closest pair (p, q):

I (p, q) bothin L or We CCI|| ThIS a spanning pair
2. (p, q) both in R or L P gp

3. One of (p,q) in L and one of (p q) in R

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

ClosestPair(P[1..n])
sort(P) by x values
Recurse(P)

Recurse(P[1..n]) // precondition: P sorted by x
// base case
if n < 4 then compare all pairs and return closest

// divide & conquer
pairL = Recurse(P[1..(n/2)])
pairR = Recurse(P[(n/2)+1..n])

pairS = findMinSpanningPair(P)
return minDistPair(pairL, pairR, pairS)

Observation 1
& Let 6 = min (dist(pair,), dist(pairg))

 €LiR> |
€ Then pair, (if closest globally) lies in the above
20-wide green strip

Example for Observation 1

 €LiR>

Q: Can p be part of a globally closest spanning pair?
A: No. Everything in R has dist > 0 to p.
And we already have a solution with dist = 0.

Observation 2
& Say, p (the lowest y valued point in strip) is in pair,

. Has to be on the opposite
*. side & can’t be > & higher
' than p on y axis.

J

)
&LiRD

€ Then the other point can only lie in this 0xd square.

=

Core ldea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the 0x0 square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point

4. So on and so forth...

Core ldea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the 0x0 square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point

4. So on and so forth...

Core ldea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the 0x0 square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point

4. So on and so forth...

Core ldea For Finding Spanning Pair

1. Start from lowest y valued point in the strip
2. Search the 0x0 square points on the opposite side
3. Repeat 1 & 2 for the next lowest y-valued point

4. So on and so forth...

Core ldea For Finding Spanning Pair

. Start from lowest y valued point in the strip
. Search the 0x0 square points on the opposite side
. Repeat 1 & 2 for the next lowest y-valued point

. So on and so forth...
Switching sides might
complicate code...
Turns out it's not needed to
get good time complexity.

A More Practical Idea

€ Don’t differentiate between same and opposite side
€ Just search the 26x6 above rectangle each time

A More Practical Idea

€ Don’t differentiate between same and opposite side
€ Just search the 26x6 above rectangle each time

A More Practical Idea

€ Don’t differentiate between same and opposite side
€ Just search the 26x6 above rectangle each time

A More Practical Idea

€ Don’t differentiate between same and opposite side
€ Just search the 26x6 above rectangle each time

1
2
3
4
)
6
7
8

9
10
11
12
13
14
15
16

ClosestPair(P[1..n])
sort(P) by x values
Recurse(P)

Recurse(P[1..n]) // precondition: P sorted by x
// base case
if n < 4 then compare all pairs and return closest

// divide & conquer
pairlL Recurse(P[1..(n/2)])
pairR Recurse(P[(n/2)+1..n])

// _combine

6 = min(dist(pairL), dist(pairR))
pairS = findMinSpanningPair(P, &)
return minDistPair(pairLl, pairR, pair$S)

18

— —

_ OwWwooO~NNOoOYU B WN =

Time complexity?
findMinSpanningPair (6, P[1..n]) // P sorted by x
S={pin P : abs(P[n/2].x - p.X) <= & } _
sort(S) by increasing y values -
if |S| <2return (—o0, —), (0,)
minPair = (S[1], S[2]) // arbitrary pair to start -
for 1 = 1..1en(S)

for j = (i+1)..len(S) }-

if S[jl.y - S[i].y > 6 then break
minPair = minDistPair(minPair, (S[i], S[jl))

retuirn minPair ‘ _

Claim: inner loop performs O(1) iterations!

19

for 1 = 1..1en(S)
- for j = (i+1)..len(S)
| if S[j]1.y - S[i].y > & then break

Obs: as many as there are points in the 20 x 0 rectangle.

Q: How many points can be in a 20 x 0 rectangle?
A: As many as in the left 0 x 0 square + right 0 x 0 square.

POINTS IN A 6 X 6 SQUARE

« Recall § Is the smallest distance between
any pair of points that are both in L or both in R

« Nofte this square is entirely in L or entirely in R
() O)

for 1 = 1..1en(S)
- for j = (i+1)..len(S)
| if S[j]1.y - S[i].y > & then break

Obs: as many as there are points in the 20 x 0 rectangle.

Q: How many points can be in a 20 x 0 rectangle?
A: As many as in the left 0 x 0 square + right 0 x 0 square.

— —

_ OwWwooO~NNOoOYU B WN =

T

ime complexity (unit cost)

findMinSpanningPair (6, P[1..n]) // P sorted by x
S={pin P : abs(P[n/2].x - p.X) <= & } ’

sort(S) by increasing y values -
if |S| <2return (—o0, —), (0,)

minPair = (S[1], S[2]) // arbitrary pair to start -
for 1 = 1..1en(S)

for j = (i+1)..len(S) }-

if S[jl.y - S[i].y > 6 then break
minPair = minDistPair(minPair, (S[i], S[jl))

retuirn minPair ‘ _

 j-loop performs at most eight iterations

« Each does 0(1) work, so entire j-loop does 0(1) work!
» SO entire i-loop does O(n) work

* SO, findMinSpanningPair does @(nlogn) work

23

Time complexity (unit cost)

ClosestPair(P[1..n])
sort(P) by x values
Recurse(P)

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

O(nlogn)

Recurse(P[1..n]) // orecondition: P sorted by x
// base case
if n < 4 then compare all pairs and return closest

// divide & conquer
pairL = Recurse(P[1..(n/2)])

O(n) + T(
Recurse(P[(n/2)+1..n])

pairR

// combine

min(dist(pairL), dist(pairR))
pairS = findMinSpanningPair (P, d)
return minDistPair(pairL, pairR, pair$S)

O(nlogn)

T'(n): ClosestPair(P|[1..n])
T(n): Recurse(P|1..n])
T'(n) = O(nlogn) + T(n)

T(n) = 2T (g) + O(nlogn)

Lec2 notes using
recursion trees showed
e T(n) € O(nlog?n)

T'(n) € O(nlogn) +
O(nlog?n)

So T'(n) € ©(nlog? n)

24

IMPROVING THIS RESULT FURTHER

25

IMPROVING THE PREVIOUS ALGORITHM

» Sorting by y-values causes findMinSpanningPair to take
O(nlogn) time instead of 0(n) time

* This happens in each recursive call,
and dominates the running fime

« Avoid sorting P over and over by creating
another copy of P that is pre-sorted by y-values

« Assume for simplicity that x coordinates are unigue

26

1
2
3
4
)
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22

ShamosClosestPair(P[1..n])
Px = sort(P) by increasing x values
Py = sort(P) by increasing y values
Recurse(Px, Py)

Shamos’ algorithm (1975)

Recurse(Px[1..n], Py[1..n])
// base case
if n < 4 then return BruteForce(Px)

// divide & conquer
xmid = Px[n/2].x

PxL = Px[1..(n/2)] // X <= xmid
PxR = Px[(n/2+1)..n] // x > xmid
PyL = select p from Py where p.x <= xmid
PyR = select p from Py where p.x > xmid

pairL = Recurse(PxL, PyL)
pairR = Recurse(PxR, PyR)

// combine

6 = min(dist(pairlL), dist(pairR))

pairS = findMinSpanningPair (6, Py, xmid)
return minDistPair(pairlL, pairR, pairS$S)

27

O wWoo~NJNOYUT B WN -

—

findMinSpanningPair(é, Py[1..n], xmid) // Py sorted by y

s <zt o iy P2 () and preserves the y-sort order
if |S| <2return (—o0, —), (o0,)

minPair = (S[1]1, S[2]) // arbitrary pair to start -
for 1 = 1..1len(S)
for j = (i+1)..1len(S)

if S[jl.y - S[i].y > & then break =0(n)
minPair = minDistPair(minPair, (S[i], S[jl))

return minPair

28

1
2
3
4
)
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22

ShamosClosestPair(P[1..n])
Px = sort(P) by increasing x values
Py = sort(P) by increasing y values
Recurse(Px, Py)

Recurse(Px[1..n], Py[1..n])
// base case
if n < 4 then return BruteForce(Px)

// divide & conquer
xmid = Px[n/2].x

PxL = Px[1..(n/2)] // X <=
PxR = Px[(n/2+1)..n] // X >
PyL = select p from Py where p.x <=
PyR = select p from Py where p.x >

pairL = Recurse(PxL, PyL) —w
pairR = Recurse(PxR, PyR)

// combine

- ociogn)

xmid
xmid
xmid
xmid

§ = min(dist(pairl), dist(pairR)) — O(1)

pairS = findMinSpanningPair (6, Py,
return minDistPair(pairlL, pairR, pa

xmid) -

irS)

Time complexity

~0

30

\‘\'
\?xj +2x% =12

Given a problem instance, find a feasible solution that
maximizes (or minimizes) a certain objective function.

for the specified problem. A7 3x, +255 12 .
- X, +3xn2Z 3
that must be satisfied by any
feasible solution. FIe =T\

For any problem instance I, (1) is the set of all
outputs (i.e., solutions) for the instance I that satisfy the given
constraints.

A function f : (I) - RT U {0}. We often f(this point) = $720
think of f as being a or a function.
A feasible solution X € (I) such that the

profit f(X) is maximized (or the cost f(X) is minimized).

31

SOLVING OPTIMIZATION PROBLEMS

« Lofs of tfechnigques
« We will study greedy approaches first
« Later, dynamic programming

« Sort of like divide and conquer
but can sometimes be much more efficient than D&C

» Greedy algorithms are usually
« Very fast, but hard to prove optimality for
« Structured as follows...

32

Given a problem instance I, it should be possible to write a
feasible solution X as a tuple |21, 29, ..., x,]| for some
integer n, where x; € X for all 7. A tuple [z1,...,x;| where
1< nisa If no constraints are violated.
Note: it may be the case that a partial solution cannot be
extended to a feasible solution.

For a partial solution X = [z1,...,xz;| where ¢ <n, we
define the

(X)={ye X :[x1,...,x;y] is a partial solution}.

33

For any y € X, g(y) is a local evaluation criterion that
measures the cost or profit of including y in a (partial)
solution.

Given a partial solution X = [z1,...,z;| where i < n,
choose y € choice(X) so that g(y) is as small (or large) as
possible. Update X to be the (i + 1)-tuple [z1,...,x;,¥].

Starting with the “empty” partial solution, repeatedly extend
it until a feasible solution X is constructed. This feasible
solution may or may not be optimal.

CORE CHARACTERISTICS

OF GREEDY ALGORITHMS = -

Greedy algorithms do no looking ahead and no backtracking.

Greedy algorithms can usually be implemented efficiently. Often they
consist of a preprocessing step based on the function g, followed by a
single pass through the data.

In a greedy algorithm, only one feasible solution is constructed.

The execution of a greedy algorithm is based on local criteria (i.e., the
values of the function g).

For certain greedy algorithms, it is possible to prove that they
always vyield optimal solutions. However, these proofs can be tricky and
complicated!

35

PROBLEM:
INTERVAL SELECTION

95% CONFIDENCE
INTERVAL?

o

%

-
WHY NOT 100%

quickmeme.com

36

PROBLEM: INTERVAL SELECTION

Where s, and f, are
positive infegers
* Input: aset 4 = {4,, ..., An} of time infervals

» Each interval A; has a sfart time s; and a finish time f;

» Feasible solution: a subset X of 4 containing
pairwise disjoint intervals

« Output: a feasible solution of maximum size
* |.e., one that maximizes | X|

Not optimall

37

POSSIBLE GREEDY STRATEGIES

1 Sort the intervals in increasing order of . At any stage,
choose the interval that is disjoint from all

previously chosen intervals

 Partial solutions
« X = [xq4,%5,...,%x;] Where each x; is an interval for the output

* Choices
« X = A (i.e., all intervals)
e Choice(X) ={y € X : [xq,..,x;,y] respects all constraints }
e |.e.,, where y ¢ X and V,cx disjoint(y, x)
* Local evaluation function
* g(¥) = s; where y = A[j]

* (l.e., g(y) = start time of interval y) :

POSSIBLE GREEDY STRATEGIES
FOR INTERVAL SELECTION

1 Sort the intervals in increasing order of . At any stage,
choose the interval that is disjoint from all
previously chosen intervals (i.e., the local evaluation criterion is s;).

2 Sort the intervals in increasing order of . At any stage, choose
the interval of that is disjoint from all previously
chosen intervals (i.e., the local evaluation criterion is f; — s;).

3 Sort the intervals in increasing order of . At any stage,
choose the interval that is disjoint from all

previously chosen intervals (i.e., the local evaluation criterion is f;).

Does one of these strategies yield a greedy algorithm?

39

STRATEGY 1: PROVING INCORRECTNESS

» |[dea: find one input for which the algorithm gives
a non-optimal solution or an infeasible solutfion

Sort the intervals in increasing order of . At any stage,
Strategy 1 choose the interval that is disjoint from all
previously chosen intervals (i.e., the local evaluation criterion is s;).

Consider ~ [0,10),[1,3),[5,7). clhlolsleln| | | | [N
input: H EHE BEERES

0 2 4 6 8 10 x-axis

40

HOW ABOUT STRATEGY 2¢

Sort the intervals in increasing order of . At any stage, choose
the interval of minimum duration that is disjoint from all previously
chosen intervals (i.e., the local evaluation criterion is f; — s;).

————————

0 2 4 6 8 10 x-axis

We will show that Strategy 3 (sort in increasing order of finishing times)
always yields the optimal solution.

41

GreedyIntervalSelection(A[1..n]) STRATEGY 3

1

2 sort(A) by increasing finish times

3 X = [A[T]]

4 prev = 1 // index of last selected interval

5

6 for 1 = 2..n

7 if A[1].s >= A[prev].f then

8 X.append(A[i]) a3
5 ~ prev =i AN BN 44

0 2 4 6 8 10 x-axis

Where iIs our local evaluation .-..........
function g in this code? HEEE - HEEEE
%

0 2 4 6 8 10 x-axis

42

GreedyIntervalSelection(A[1..n]) STRATEGY 3

sort(A) by increasing finish times
X = [A[1]] Time complexity:
prev = 1 // index of last selected interval

Sort + one pass

1
y)

3

4

5

6 for i = 2..n € O(nlogn)
7

8

9

0

1

if A[ij.s >= A[prev].f then
| X.append(A[i])
prev = 1

L |
1 return X
How to prove this is correcte

(l.e., how can we show the returned Feasibility? Easy!
solution is both feasible and optimal2) We always choose an interval that starts

after all other chosen intervals end

Optimality? Harder...

43

>
e -
ﬂ - . - . .

44

GREEDY CORRECTNESS PROOFS

« Want to prove: greedy solution X is correct (feasible & optimal)
» Usually show feasibility directly and optimality by coniradiction:

« Suppose solution O is better than X
« Show this necessarily leads to a contradiction
» Two broad strategies for deriving this confradiction:

1. Greedy stays ahead: show every choice in X is
“at least as good” as the corresponding choice in 0

2. Exchange: show 0 can be improved by replacing some

choice in 0 with a choice IN X s approach #1

(next time)
45

