
CS 341: ALGORITHMS
Lecture 5: finishing D&C, greedy algorithms I

Readings: see website

Trevor Brown

https://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

1

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

THE CLOSEST PAIR

PROBLEM

classroom

You

overworked

student
When someone near you

2

THE CLOSEST PAIR PROBLEM

◆ Input: Set P of n 2D points

◆Output: pair p and q s.t. dist(p, q) minimum over all pairs

◆Break ties arbitrarily

◆ dist(p,q) = (p.x-q.x)2 + (p.y-q.y)2

3

Can we Divide & Conquer?

◆ Like non-dominated points: sort by x-axis & divide in half

p4
p7

p8

p3

p1

p2

p6

p5

L R

Claim that doesn’t require a proof: closest pair (p, q):

1. (p, q) both in L or

2. (p, q) both in R or

3. One of (p,q) in L and one of (p,q) in R

We call this a spanning pair

4

How to efficiently compute the

minimum spanning pair?

5

Observation 1

◆ Let δ = min (dist(pairL), dist(pairR))

◆ Then pairs (if closest globally) lies in the above

2δ-wide green strip

δ δ

Q: Why?

L R→

6

Example for Observation 1

p

δ δ

Q: Can p be part of a globally closest spanning pairs?

A: No. Everything in R has dist > δ to p.

And we already have a solution with dist = δ.

L R→

7

Observation 2

◆ Say, p (the lowest y valued point in strip) is in pairs

δ δ

p

◆ Then the other point can only lie in this δxδ square.

δ

δ
Q: Why?

Has to be on the opposite

side & can’t be > δ higher

than p on y axis.

L R→

8

Core Idea For Finding Spanning Pair

δ δ

1. Start from lowest y valued point in the strip

2. Search the δxδ square points on the opposite side

3. Repeat 1 & 2 for the next lowest y-valued point

4. So on and so forth…

L R→ 9

Core Idea For Finding Spanning Pair

δ δ

1. Start from lowest y valued point in the strip

2. Search the δxδ square points on the opposite side

3. Repeat 1 & 2 for the next lowest y-valued point

4. So on and so forth…

L R→ 10

Core Idea For Finding Spanning Pair

δ δ

1. Start from lowest y valued point in the strip

2. Search the δxδ square points on the opposite side

3. Repeat 1 & 2 for the next lowest y-valued point

4. So on and so forth…

L R→ 11

Core Idea For Finding Spanning Pair

δ δ

1. Start from lowest y valued point in the strip

2. Search the δxδ square points on the opposite side

3. Repeat 1 & 2 for the next lowest y-valued point

4. So on and so forth…

L R→ 12

Core Idea For Finding Spanning Pair

δ δ

1. Start from lowest y valued point in the strip

2. Search the δxδ square points on the opposite side

3. Repeat 1 & 2 for the next lowest y-valued point

4. So on and so forth…

L R→

Switching sides might

complicate code…

Turns out it’s not needed to

get good time complexity.

13

A More Practical Idea

δ δ

◆ Don’t differentiate between same and opposite side

◆ Just search the 2δxδ above rectangle each time

L R→ 14

A More Practical Idea

δ δ

◆ Don’t differentiate between same and opposite side

◆ Just search the 2δxδ above rectangle each time

L R→ 15

A More Practical Idea

δ δ

◆ Don’t differentiate between same and opposite side

◆ Just search the 2δxδ above rectangle each time

L R→ 16

A More Practical Idea

δ δ

◆ Don’t differentiate between same and opposite side

◆ Just search the 2δxδ above rectangle each time

L R→ 17

18

Claim: inner loop performs O(1) iterations!

δ δ

S1

S2

S3

S4

Points in S

Θ(𝑛)

Time complexity?

Θ(𝑛 log 𝑛)

Θ(1)

Θ(1)
Θ(1)

? ? ?

19

if |S| < 2 return −∞, −∞ , (∞, ∞)

Obs: as many as there are points in the 2δ x δ rectangle.

δ δ

Q: How many points can be in a 2δ x δ rectangle?

A: As many as in the left δ x δ square + right δ x δ square.

L R→

For a particular 𝒊,
how many 𝒋 iterations occur?

δ

𝑺[𝒊]

20

POINTS IN A 𝜹 × 𝜹 SQUARE

• Recall 𝛿 is the smallest distance between

any pair of points that are both in 𝐿 or both in 𝑅

• Note this square is entirely in 𝐿 or entirely in 𝑅

δ

δ

So, δ is the smallest distance between

any pair of points in this square!

A point in the middle would rule out any

other points

So, most efficient packing of points puts

one in each corner (4 total)

21

Obs: as many as there are points in the 2δ x δ rectangle.

δ δ

Q: How many points can be in a 2δ x δ rectangle?

A: As many as in the left δ x δ square + right δ x δ square.

L R→

For a particular 𝒊,
how many 𝒋 iterations occur?

δ

𝑺[𝒊]

Can only contain

eight points!

(technically six)

22

• j-loop performs at most eight iterations

• Each does Θ 1 work, so entire j-loop does Θ(1) work!

• So entire i-loop does Θ(𝑛) work

• So, findMinSpanningPair does 𝚯(𝒏 𝐥𝐨𝐠 𝒏) work

δ δ

S1

S2

S3

S4

Points in S

Θ(𝑛)

Time complexity (unit cost)

Θ(𝑛 log 𝑛)

Θ(1)

Θ(1)
Θ(1)

? ? ?

23

if |S| < 2 return −∞, −∞ , (∞, ∞)

• 𝑇′ 𝑛 : 𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝑃𝑎𝑖𝑟(𝑃 1. . 𝑛)

• 𝑇 𝑛 : 𝑅𝑒𝑐𝑢𝑟𝑠𝑒(𝑃 1. . 𝑛)

• 𝑇′ 𝑛 = Θ 𝑛 log 𝑛 + 𝑇(𝑛)

• 𝑇 𝑛 = 2𝑇
𝑛

2
+ Θ(𝑛 log 𝑛)

• Lec2 notes using

recursion trees showed

• 𝑻 𝒏 ∈ 𝚯(𝒏 𝐥𝐨𝐠𝟐 𝒏)

• 𝑇′ 𝑛 ∈ Θ 𝑛 log 𝑛 +
Θ 𝑛 log2 𝑛

• So 𝑻′ 𝒏 ∈ 𝚯(𝒏 𝐥𝐨𝐠𝟐 𝒏)

Θ(𝑛 log 𝑛)

𝑇(𝑛)

Θ(1)

Θ 𝑛 + 𝑇
𝑛

2
Θ 𝑛 + 𝑇

𝑛

2

Θ(1)

Θ(𝑛 log 𝑛)

Θ(1)

24

Time complexity (unit cost)

IMPROVING THIS RESULT FURTHER

25

IMPROVING THE PREVIOUS ALGORITHM

• Sorting by 𝑦-values causes findMinSpanningPair to take

𝑂(𝑛 log 𝑛) time instead of 𝑂(𝑛) time

• This happens in each recursive call,

and dominates the running time

• Avoid sorting 𝑃 over and over by creating

another copy of 𝑃 that is pre-sorted by 𝒚-values

• Assume for simplicity that x coordinates are unique

26

Shamos’ algorithm (1975)

This selection step

preserves the y-sort order

Observe PxL and PyL

contain the same points

(specifically the points
with x <= xmid)

Moreover PxL is sorted by x

while PyL is sorted by y

And similarly for PxR, PyR…
No need to sort in Recurse!

27

x-coord

uniqueness used

𝚯(𝒏) and preserves the y-sort order

Θ(𝑛)

Total Θ(𝑛) for this function

28

if |S| < 2 return −∞, −∞ , (∞, ∞)

Time complexity
Θ(𝑛 log 𝑛)

Θ(𝑛)

𝑇
𝑛

2
𝑇

𝑛

2

Θ(1)
Θ(𝑛)

Θ(1)

𝑇 𝑛 = 2𝑇
𝑛

2
+ Θ 𝑛

Merge sort recurrence…

𝑇 𝑛 ∈ Θ(𝑛 log 𝑛)

So runtime for Shamos’

algorithm is in 𝚯(𝒏 𝐥𝐨𝐠 𝒏)

29

GREEDY

ALGORITHMS

30

f(this point) = $720

31

SOLVING OPTIMIZATION PROBLEMS

• Lots of techniques

• We will study greedy approaches first

• Later, dynamic programming

• Sort of like divide and conquer

but can sometimes be much more efficient than D&C

• Greedy algorithms are usually

• Very fast, but hard to prove optimality for

• Structured as follows…

32

33

Local evaluation

means we cannot

consider future
choices when

deciding whether

to include y in our

solution.

We irrevocably

decide to include

y (or not). We do

not reconsider.

We choose the next element

to include greedily by taking

the y that gives the maximum

local improvement.

This may or may not be a

good idea…
34

CORE CHARACTERISTICS

OF GREEDY ALGORITHMS

Cannot consider how your

current choice affects
future choices

Cannot undo / change

your choice

35

PROBLEM:

INTERVAL SELECTION

36

PROBLEM: INTERVAL SELECTION

• Input: a set 𝑨 = {𝑨𝟏, … , 𝑨𝒏} of time intervals

• Each interval 𝑨𝒊 has a start time 𝒔𝒊 and a finish time 𝒇𝒊

• Feasible solution: a subset 𝑿 of 𝑨 containing

pairwise disjoint intervals

• Output: a feasible solution of maximum size

• I.e., one that maximizes |𝑋|

Where 𝑠𝑖 and 𝑓𝑖 are

positive integers

Chosen

Rejected

Bad solution.

Not optimal!

37

POSSIBLE GREEDY STRATEGIES

• Partial solutions

• 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑖] where each 𝑥𝑖 is an interval for the output

• Choices

• 𝒳 = 𝐴 (i.e., all intervals)

• Choice 𝑋 = { 𝑦 ∈ 𝒳 ∶ 𝑥1, … , 𝑥𝑖 , 𝑦 respects all constraints }

• i.e., where 𝑦 ∉ 𝑋 and ∀𝑥∈𝑋 disjoint(𝑦, 𝑥)

• Local evaluation function

• 𝑔 𝑦 = 𝑠𝑗 where 𝑦 = 𝐴[𝑗]

• (i.e., 𝑔 𝑦 = start time of interval 𝑦)
38

POSSIBLE GREEDY STRATEGIES

FOR INTERVAL SELECTION

39

STRATEGY 1: PROVING INCORRECTNESS

• Idea: find one input for which the algorithm gives

a non-optimal solution or an infeasible solution

x-axis0 2 4 6 8 10

Consider
input:

Strategy 1

c h o s e n

40

HOW ABOUT STRATEGY 2?

x-axis0 2 4 6 8 10

Consider

input:

Strategy 2

41

STRATEGY 3

x-axis0 2 4 6 8 10

x-axis0 2 4 6 8 10

𝐴[1] 𝐴[2]

𝐴[3]

𝐴[1] 𝐴[3]

𝐴[2]
Where is our local evaluation

function 𝑔 in this code?

42

STRATEGY 3
Time complexity:

Sort + one pass

∈ Θ(𝑛 log 𝑛)

How to prove this is correct?

(I.e., how can we show the returned

solution is both feasible and optimal?)

Feasibility? Easy!

We always choose an interval that starts

after all other chosen intervals end

Optimality? Harder…

43

44

GREEDY CORRECTNESS PROOFS

• Want to prove: greedy solution 𝑋 is correct (feasible & optimal)

• Usually show feasibility directly and optimality by contradiction:

• Suppose solution 𝑂 is better than 𝑋

• Show this necessarily leads to a contradiction

• Two broad strategies for deriving this contradiction:

1. Greedy stays ahead: show every choice in 𝑋 is

“at least as good” as the corresponding choice in 𝑂

2. Exchange: show 𝑂 can be improved by replacing some

choice in 𝑂 with a choice in 𝑋
Let’s demonstrate approach #1

(next time)

45

