CS 341: ALGORITHMS

Lecture 7. dynamic programming |

Readings: see website

Trevor Brown

hittps://student.cs.uwaterloo.ca/~cs341

trevor.brown@uwaterloo.ca

https://student.cs.uwaterloo.ca/~cs341
mailto:trevor.brown@uwaterloo.ca

L L L L L L L
L R R . LR *» .0

o .ee
el \45,-\;;'5;: CR
LI ICIC IO
OO O 0N

N
2 0 B

._)-7,{(/ > .. «)s{‘;-(_' /Q«,-;_)«('\.‘-.;\ L)

o 8000 S0 et .t et i et et s el
. . o IR LA ¥
]

ST BRI R
2o o] AT

8 N
- \\I

INTERVAL COLOURING

PROBLEM: INTERVAL COLOURING

MORE EXAMPLES
-

Same color,
but disjoint. OK!

Greedy Strategies for Interval Colouring

As usual, we consider the intervals one at a time.

At a given point in time, suppose we have coloured the first ¢ < n intervals
using d colours.

We will colour the (7 + 1)st interval with any permissible colour. If it
cannot be coloured using any of the existing d colours, then we introduce
a new colour and d is increased by 1.

Question: In what order should we consider the intervals?

We will colour the (i + 1)st interval with any permissible colour. If it
cannot be coloured using any of the existing d colours, then we introduce
a new colour and d is increased by 1.

EXAMPLE:
ORDER
MATTERS!

Consider intervals in
the order they are

given in the input:
A . Ay

X-axis

EXAMP
ORDE

S

R

MATTERS!

4 6 8 10 12 14 16 18 20
X-axis

EXAMPLE:

ORDER
MATTERS!

6 8 10 12 14 16 18 20
X-axis

1

EXAMPLE:
ORDER ———

HEEE
MATTERS! & - lllll
EEEENEEEN

0 2 4 6 8 10 12 14 16 18 20
X-axis

10

1

EXAMPLE:
ORDER ———

HEEE
MATTERS! & - lllll
EEEENEEEN

0 2 4 6 8 10 12 14 16 18 20
X-axis

11

1

EXAMPLE:
ORDER ———

HEEE
MATTERS! & - lllll
EEEENEEEN

0 2 4 6 8 10 12 14 16 18 20
X-axis

12

1

EXAMPLE: EEEEEE
ORDER ———

3

MATTERS! & - HENEE
EEEENEEEN

0 2 4 6 8 10 12 14 16 18 20
X-axis

13

1

EXAMPLE: EEEEEE
ORDER ———

3

MATTERS! & - ERNEE
EEEENEEEN

0 2 4 6 8 10 12 14 16 18 20
X-axis

14

1

EXAMPLE: EEEEEE
ORDER ———

3

MATTERS! & - ERNEE
EEEENEEEN

0 2 4 6 8 10 12 14 16 18 20
X-axis

15

1

EXAMPLE: EEEEEE
ORDER ———

3

MATTERS! & - ERNEE
4

0 2 4 6 8 10 12 14 16 18 20
X-axis

16

1

EXAMPLE: EEEEEE
ORDER ———

3

MATTERS! EIEEEE

DEEEEEE
4

Used 4 colours
Can we do better? 0 2 4 6 8 10 12 14 16 18 20

X-axis

17

EXAMPLE:
ORDER
MATTERS!

Pre-sort intervals by

increasing start tfime!

0 2 4 6 8 10 12 14 16 18 20
X-axis

18

EXAMP
ORDE

R

MATTERS!

Pre-sort intervals by

increasing start tfime!

S

by

—_—

0 2 4 6 8 10 12 14 16 18 20
X-axis

19

EXAMPLE:
ORDER
MATTERS!

0 2 4 6 8 10 12 14 16 18 20
X-axis

20

EXAMP
ORDE

S

R

MATTERS!

16

18

20
X-axis

21

EXAMP
ORDE

S

R

MATTERS!

16

18

20
X-axis

22

EXAMP
ORDE

S

R

MATTERS!

16

18

20
X-axis

23

EXAMP
ORDE

S

R

MATTERS!

16

18

20
X-axis

24

EXAMP
ORDE

S

R

MATTERS!

16

18

20
X-axis

25

EXAMP
ORDE

S

R

MATTERS!

16

18

20
X-axis

26

EXAMP
ORDE

S

R

MATTERS!

16

18

20
X-axis

27

EXAMP
ORDE

S

R

MATTERS!

EXAMPLE:
ORDER
MATTERS!

Used 3 colours

Turns out to be optimail...

29

1 Preprocess(A[1)

d = # of colours & iort A by ingreaﬁing start time finish[c] = finish time of last
" let f[| be the finish times in A iInterval fo receive colour ¢
5 return GreedyIntervalColouring(s, f)
6
7 GreedyIntervalColouring(s[1, fI 1)
8 d =
9 colour[1] = Interval 1 gets colour 1
10 finish[1] = f[1]
11 For each interval 4;,
12 for 1 = search for an appropriate colour ¢

Check i = | reused = false

eck if we can reuse for c = . . B
any colourcin 1..d if finish[c] <= s[i] then Cor.15|.der interval 4; = (Si'fi,)'

o colour[i] = c If s; = finish[c], then we can give 4;
17 finish[c] = f[1i] colour ¢ without breaking feasibility
18 reused = true
19 break
20 if not reused then
21 d++ we reused a colour
22 colour[i] = d
23 finish[d] = f[1i]
24
25 return d If we didn’t reuse a colour,

use a new colour

30

‘ Initial state

EXAMPLE:
RUNNING
GREEDY

0 2 4 6 8 10 12 14 16 18 20
X-axis

31

‘ i=1

Code before the
loop: just assign
colour 1

EXAMPLE:
RUNNING
GREEDY

0 2 4 6 8 10 12 14 16 18 20
X-axis

32

s finish[1] < s,¢

No. We cannot

: reuse colour 1.
While loop over c.

Check if we can Cannot reuse any
reuse a colorin 1..d colour. Create @

EXAMPLE: e
RUNNING
GREEDY

0 2 4 6 8 10 12 14 16 18 20
X-axis

33

s finish[1] < s,¢

No. We cannot

: reuse colour 1.
While loop over c.

Check if we can Cannot reuse any
reuse a colorin 1..d colour. Create @

EXAMPLE: e
RUNNING
GREEDY

0 2 4 6 8 10 12 14 16 18 20
X-axis

34

While loop over c.
Check if we can
reuse a colorin 1..d

EXAMPLE:
RUNNING
GREEDY

s finish[1] < s;¢

No. We cannot
reuse colour 1.

s finish[2] < s,¢
No. We cannoft

reuse colour 2.

Cannot reuse any
colour. Create
new one.

X-QaXxis

35

s finish[1] < s;¢

~ 0. We cannot

reuse colour 1.

While loop over c. |
Check if we can | Is finish[2] < 552
reuse a colorin 1..d

| No. We cannoft
. reuse colour 2.
EXAMPI—E Cannot reuse any
lour. Creat
RUNNING R
GREEDY

0 2 4 6 8 10 12 14 16 18 20
X-axis

36

s finish[1] < s5,¢

Yes. We can

: reuse colour 1.
While loop over c.

Check if we can
reuse a colorin 1..d

EXAMPLE:
RUNNING
GREEDY

0 2 4 6 8 10 12 14 16 18 20
X-axis

37

s finish[1] < s5,¢

~ finish[1]= § finish[2]= finish[3]=

Yes. We can
reuse colour 1.

While loop over c.
Check if we can
reuse a colorin 1..d

EXAMPLE:
RUNNING
GREEDY

0 2 4 6 8 10 12 14 16 18 20
X-axis

38

While loop over c.
Check if we can
reuse a colorin 1..d

EXAMPLE:
RUNNING
GREEDY

NG _
-

Is finish[1] < 5.2

| finish[1]= finish[2]= § finish[3]= No. We cannot

reuse colour 1.
Is finish[2] < s5¢

No. We cannot
reuse colour 2.

Is finish[3] < 542

Yes. We can
reuse colour 3.

14 16 18 20
X-axis

39

s finish[1] < sc¢

No. We cannot
While loop over c. (EPRIEHEEN T
Check if we can s finish[2] < sc¢

reuse a colorin 1..d
No. We cannot

EXAM P I_ Ei“... reuse colour 2.

s finish[3] < sc¢

-
R U N N N G Yes. WeI c:c:n3
GREEDY . reuse colour 3.

And so on
As I8 '
A . and so forth...

: EEENE -
. IHNEEEEEEEEENEEE =
%

18 20

0 2 4 6 8 10 12 14 16
X-axis

40

Correctness of the Algorithm

The correctness of this greedy algorithm can be proven inductively as well
as by a “slick” method—we give the “slick” proof:

Let D denote the number of colours used by the algorithm.

41

Let Fp be the first interval that has colour D

42

Let Fp be the first interval that has colour D

43

Let Fp be the first interval that has colour D Let’s argue L, overlaps Fp,

Let L, be the last inferval that has colour ¢ and starts before Fj, Note L, must exist

i We prove Fp overlaps every interval L, forall ¢ < D (otherwise greedy would
just use colour 1 for Fp)

ANnd finish[L,] must be after
Fp starts (same reason)

——

S t applies t
IIIIIIIIIIIIIIII o

So, Fp overlaps D — 1 intervals!

Moreover, every interval in
{L4,...,Lp_4} contains the
starting time of F

So, we must use D colours!
44

o oYUl B WN =

e st seae cin - TIME COMPLEXITY?

let s[1..n] be the start times in A
let f[1..n] be the finish times in A
return GreedyIntervalColouring(s, f)

reedyIntervalColouring(s[1..n], f[1..n])
d =1
colour[1] 1
finish[1] f[1]

for i - . Omiterations
reused = false
for c = 1..d A——-IIIIIIIIIIIIIIIIII
if finish[c] <= s[i] then
colour[i] =
finish[c] = f[1i]
reused = true

break
if not reused then
d++
colour[i] = d What inefficiencies exist in this algorithm?e
finish[d] = f[i] Could we make it faster with clever data

2
return d sfructure usages

45

IMPROVING THIS ALGORITHM

« Current greedy algorithm:

» For each interval 4;, compare ifs start time s; with the
finish|[c] times of all colours intfroduced so-far

 Why? Looking for some finish[c] time that is earlier than s;

 We are doing linear search... Can we do better?

» Use a priority queue 1o keep track of the earliest finish|c]
at all fimes in the algorithm

 Then we only need to look at minimum element

46

EXAMPLE:
HEAP-BASED

ALGORITHM

Min element: NULL

0 2 4 6 8 10 12 14 16 18 20
X-axis

47

HEAP-BASED
ALGORITHM

. . Check h Empty,
EXAMPLE
A

Min element: NULL

0 2 4 6 8 10 12 14 16 18 20
X-axis

48

HEAP-BASED
ALGORITHM

EXAMPLE:
A L

Min elementzzl

0 2 4 6 8 10 12 14 16 18 20
X-axis

49

HEAP-BASED
ALGORITHM

EXAM P I_E X lteration i=2 Che.c.k heap | Chec;k It finish fime No. New colour!
AL

Min elementzzl

0 2 4 6 8 10 12 14 16 18 20
X-axis

50

HEAP-BASED
ALGORITHM

EXAM P I_E X lteration i=2 Che.c.k heap | Chec;k It finish fime No. New colour!
AL

Min element:

feS

finish at
time 7

0 2 4 6 8 10 12 14 16 18 20
X-axis

51

HEAP-BASED
ALGORITHM

EXAM P I_E X lteration i=3 Che.c.k heap | Chec;k It finish fime No. New colour!
AL

Min element:

feS

finish at
time 7

0 2 4 6 8 10 12 14 16 18 20
X-axis

52

HEAP-BASED
ALGORITHM

Min elementzzl

EXAM P I_E : Iteration i=3 § Che.c.k neefe Chec;k IRiTAT NI No. New colour!
A

finish at
time 7 time 5

0 2 4 6 8 10 12 14 16 18 20
X-axis

53

EXAMPLE: Ty ety
i t finish

HEAP-BASED LR
ALGORITHM Az lll_

. A,
:
A6

es .

:
time 7 time 5 A,

0 2 4 6 8 10 12 14 16 18 20
X-axis

54

EXAMPLE: S |
' t finish

HEAP-BASED — (7T
ALGORITHM ~ IIIIIII

As

Min element° As
1 fime 5 A ..

A,

A7

finish at A,
time 7 time 5 A,

0 2 4 6 8 10 12 14 16 18 20
X-axis

55

EXAMILE R et

' t finish

HEAP-BASED é
ALGORITHM * lllllll

Min element° As
Liime o As ..llF

A6

T’ "
finish at Ag
time 7 time 5 A,

0 2 4 6 8 10 12 14 16 18 20
X-axis

56

EXAMPLE: [e e o

' t finish

HEAP-BASED e
ALGORITHM &

Min element°
Lfime > II..F

finish at
time 7 time 5

0 2 4 6 8 10 12 14 16 18 20
X-axis

57

EXAMPLE- terationi=5 B Checkheap B Check if finish time § Yes. Reuse colour,
g | minmom | Sisbefoes; f deleteminanc

HEAP-BASED

ALGORITHM

Min element: f"i“Sh at
time /7

finish at
time 7 time 13

insert new finish
.~ time into heap!

A, L
MEEEEEEE
3

Ag And so on,
A, and so forth...

0 2 4 6 8 10 12 14 16 18 20
X-axis

58

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Preprocess(Al[1)
sort A by increasing start time
let s]| 1 be the start times in A
let [] be the finish times in A
return GreedyIntervalColouring(s, f)

GreedyIntervalColouring(s| 1, I 1)
d =
ltiolour[] '=PQ O(logS) where

= new min p— .
h.insert([f[1],colour[1]1) S = size(priority queue)

for i =
(fc, ¢) = h.min()
if fc <= s[i] then

h.deleteMin()-
colour[i] = c 0(log D)

d++
colour[i] = d

h.insert([f[i], colour[i]])

return d

else

Total 8(nlogn) + ©(nlog D)

Sincen = D, O(nlogn)

59

T

L
OO0 o
B SO S

R Bt
<5

JOOUOU - . . . - .. OO
otete et e e e et oo’ ola "aatatatetts _ DRI
A AN AN 9 0000 & o Y o g N NP B
T A Py v N S e g ' e e AN AN a
s ~7 o b . % '~—"..‘~1'._—\r,..,\/‘.f~J‘~_-‘\a'..‘\x~:\4‘:‘\a".’;«“:‘- PNIN

Whate

60

—Richard Bellman, Eye of the Hurricane: An Autobiography
(1984, excerpts from page 159)

Where did the name, dynamic programming, come from? The
1950s were not good years for mathematical research.

We had a very interesting gentleman in Washington

named Wilson. He was Secretary of Defense, and he actually
had a pathological fear and hatred of the word "research”... He
would turn red, and he would get violent if people used the term
research in his presence. You can imagine how he felt, then,
about the term mathematical.

| felt | had to do something to shield Wilson ... from the fact that |
was really doing mathematics... What title, what name, could |
choose? In the first place | was interested in planning, in decision
making, in thinking. But planning, is not a good word for various
reasons. | decided therefore to use the word "programming." |
wanted to get across the idea that this was “dynamic,” this was
multistage, this was time-varying. | thought, let's kill two birds with
one stone.

| thought dynamic programming was a good name.
It was something not even a Congressman could object to.

“Bottom-up recursion”
might also a reasonable
name, as we'll see...

COMPUTING FIBONACCI NUMBERS INEFFICIENTLY

A TOY EXAMPLE TO COMPARE D&C TO DYNAMIC PROGRAMMING

1 BadFib(n)
2 if n == 0 or n == 1 then return n
3 return BadFib(n-1) + BadFib(n-2)

Wri"w,.n'
o .-,'. I 5 'iﬁ’i ,:

. T VY PG S PNV . : ._
- *
- l -! ‘.t p : !
<P M Q :
V \ 7 - . . X - Y v <
=

RUNTIME

In unit costmodel ! BadFib(n)
2 if n == or n == then return n
 (UNREALISTICY) 3 return BadFib(n-1) + BadFib(n-2)

T(n) =T =D+ Th=2y+0C) This O(1) would change in the bit
complexity model
e T(n) =2 2T(n—-2)+0(1)
e T(n) <2T(n—1)+0(1)
n/2 levels of recursion for the first expression
N levels for the second expression
Work doubles at each level
T(n) is certainly in ©(2™?) and 0(2")

63

WHY IS THIS SO SLOW?

The Recursion Tree to Evaluate f5:
« Subproblems have

LOTS of overlap!

« Every subfree on
the right appears
on the left

e ... recursively ...

« FEach subtree is
computed

exponentially
often in its depth

This overlap suggests dynamic
programming may be able to help!

Designing Dynamic Programming Algorithms for
Optimization Problems

(Optimal) Recursive Structure
Examine the structure of an optimal solution to a problem
instance I, and determine if an optimal solution for I can be
expressed in terms of optimal solutions to certain

subproblems of /.

Define Subproblems
Define a set of subproblems S(I) of the instance I, the

solution of which enables the optimal solution of I to be
computed. I will be the last or largest instance in the set

S(I).

65

Designing Dynamic Programming Algorithms (cont.)

Recurrence Relation
Derive a recurrence relation on the optimal solutions to the
instances in S(I). This recurrence relation should be
completely specified in terms of optimal solutions to
(smaller) instances in S(/) and/or base cases.

Compute Optimal Solutions
Compute the optimal solutions to all the instances in S(I).
Compute these solutions using the recurrence relation in a
bottom-up fashion, filling in a table of values containing
these optimal solutions. Whenever a particular table entry is
filled in using the recurrence relation, the optimal solutions
of relevant subproblems can be looked up in the table (they
have been computed already). The final table entry is the
solution to I.

66

SOLVING FIB USING DYNAMIC PROGRAMMING

(Optimal) Recursive Structure

« Solution to n-th Fibonacci number f(n) can be expressed
as the addition of smaller Fibonacci numbers

* No notion of optimality for this parficular problem

Define Subproblems

e The set subproblems that will be combined to obtain Fib(n)
IS {Fib(n — 1), Fib(n — 2)}

+ S(I) = {Fib(0), Fib(1), ..., Fib(n))
Recurrence Relation o {f(n D+ fn—2):i>2
n) =

1 1 =1
0 :1=0

Computing (Optimal) Solutions
« Create table f[1..n] and compute its entries “bottom-up”

67

FILLING THE TABLE "BOTTOM-UP”

« Key idea:
« When computing a table entry

 Must have already computed
the entries it depends on!

 Dependencies
« Extract directly from recurrence
* Enfry n depends on n-1 and n-2

« Computing entries in order 1..n
guarantees n-1 and n-2 are already
computed when we compute n

68

fi2 = 0
1 FibDP(n) f11 =1
2 f = new array of size n
3 for 1 = 2
4 f[o] =0 temp
5 f[1] = 1
6 fi =
7 for i = 2..n ,
8 | f[i] = f[i-1] + f[i-2] fi2 =
9 fil =
10 return f[n] .
return fi

« Space saving optimization:
 We never look aft f[i-3] or earlier

« Can make do with a few
variables instead of a table

sl
SRR

CORRECTNESS
» Step 1

Order 0..n means i-1 and i-2 are already

computed when we compute i

* Prove that when compuling a table entry,
dependent entries are already computed

Suppose f[i-1] and f[i-2] are the

« Step 2 (similar to D&C) (i-1)th and (i-2)th Fib #s

. Suppose subproblems are Then prove f[i] = the n-th Fib #

solved correctly (optimally)

FibDP(n)
f = new array of size n

1

2

* Prove these (optimal) :
subsolutions are combined | s
into a(n optimal) solution :
8

9

0

f[O]
1]
for i=

fl1] = f[1-1] + f[1-2]

1 greturn fln] 70

MO

DEL OF COMPUTATION FOR RUNTIME

« Unit cost model is not very realistic for this problem,
because Fibonacci numbers grow quickly

10]=

1100

1300]

99
=354224848179261215075

—222232244629420445529739893461909967206666939096499764990979600

Value of F[n] is exponential in n: f, € 0(¢™) where ¢ = 1.6

¢™ needs log(¢™) bits to store it

But let's use unit cost

« SO F[n] needs ®(n) bits to storel anyway for simplicity

71

RUNNING TIME (UNIT COST)

2 FibDP(n)
T(Tl) S G(n) f = new array of size n
T10]
1]

1

for 1 = 2..n
| f[i] = f[i-1] + f[i-2]

O W oo ~NOoO Ul B WN =

}eturn fln]

—

72

A BRIEF ASIDE

Is this linear runtime?
NO! This is “a linear function of n”

When we say “linear runtime” we mean
“a linear function of the input size”

What is the Input size S¢
* The Input is the number n.

« How many bits does it take to store ne
O(logn)

* SO S = logn bits

Express T(n) as a function
of the input size S (in bits)

T(n) € O(n)
28 — glogn _

So T(n) € 0(2%)

This algorithm is exponential
in the input size!

... but still exponentially
faster than 27/2

73

ROD CUTTING

A "REAL" DYNAMIC PROGRAMMING EXAMPLE

* Input:

length i

* n: length of rod

price p;

* D1, ..., Pnt i = PRGOS BRISRIC N |
« Quftput:

 Max income possible by cutting the rod of length n
INfo any number of integer pieces (maybe no cuts)

All ways of cutting
arod of length 4

5

11 5 1 5 1 11 11 1 1
E | tput: 1 = "
et (OO0D OO (MO0 OO0

74

DYNAMIC PROGRAMMING APPROACH

» High level idea (can just think recursively to start)
« Glven arod of length n

» Either make no cuts,
or make a cut and recurse on the remaining parts

. Income p,,

. . Income(Left) + Income(Right)

« Where should we cut@¢

75

DYNAMIC PROGRAMMING APPROACH

. Try all ways of making that cut
e |.e., fry a cut at positions 1,2, ...,n — 1
* In each case, recurse on two rods [0,i] and [i, n]
« Take the max income over all possibilities (each i / no cut)

=1 {B (RERRERRERREREED
oy X))))))))))))
oy R))))))))))))

=»-1 (HENEEEEREREREED (B

76

L L L L L L L
L R R . LR *» .0

. '.‘ o -y,
SRS _SAJS.:: CR
AN . :)‘,)1 K
OO O 0N

N
2 0 B

ota s e s
FLICICHC S0

-
S een s
& 4 " SN N\

77

RECURRENCE RELATION e seronitcatlyl
» Define M(k) = maximum income for rod of length k
* [f we do not cut the rod, max iIncome Is py,

e fwedocutarodati
o) |
Length i Length k — i
e max income is M(i) + M(k — i)
e Want to maximize this over all i
e max;{M({) + M(k—1i)} (for0 <i < k)
» M(k) = max{py, max; ;< 1{M(@) + M(k — i)}}

78

COMPUTING SOLUTIONS BOTTOM-UP

- Recurrence: M(k) = max{p;, max;;<;_1{M(i) + M(k — i)}
« Compute table of solutions: M[1..n]

M mm.......
k n

 Dependencies: enfry k depends on
« MI[i] > M[1..(k—1)]
e« M[k—i] = MJ[1..(k—-1)]

« All of these dependencies are < k
« SO we can fill In the table entries in order 1..n

79

0O~ Ol AWM —

— .
N = O WO

Recall, semantically, M (k) = maximum income for rod of length k
Recurrence: M(k) = max{p;, max,;<;_1{M(i) + M(k — i)}

RodCutting(n, p[1..n])
M = new array[1..n]
// compute each entry M[k]
for k = 1..n
M[k] = p[k] // current best = no cuts
// try each cut in 1..(k-1)
for 1 =1..(k-1) €

M[k] = max(M[k], M[1i] + M[k-1]) <—

rEtu;rn - - -

80

MISCELLANEOUS TIPS

» Building a table of results bottom-up
Is what makes an algorithm DP

* There is a similar concept called memoization

« But, for the purposes of this course,
we want to see bottom-up table filling!

e Base cases are critical

* They offen completely
determine the answer

* Try setting f[0]=f[1]=0 in FibDP...

81

