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Closest Pair

Input: n points (x1, y1), . . . , (xn, yn) ∈ R2

Output: indices 1 ≤ i < j ≤ n which minimizes the distance

Unit cost model!

Simplifying assumption: all x coordinates are distinct.

Exercise: remove this assumption, but preserve the running time.

Exhaustive search: compute all distances and output minimum one -
running time O(n2)

Can we do better?

Divide and conquer!
1 Vertical line Λ that separates points into 2 halves (left and right of Λ)

Use median finding algorithm from previous lecture.

2 Let L and R be the set of points to left and right of Λ, respectively
3 Solve closest pair for L and for R. Suppose the smallest distance δ is

between points of L.
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between points of L.

Are we done?

Nope. Need to check if smallest distance is between points crossing
from L to R.
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2 Let L and R be the set of points to left and right of Λ, respectively
3 Solve closest pair for L and for R. Suppose the smallest distance δ is

between points of L.

Are we done?

Nope. Need to check if smallest distance is between points crossing
from L to R.

Checking crossing pairs seems as hard as the original problem!
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Closest Pair

Input: n points (x1, y1), . . . , (xn, yn) ∈ R2

Output: indices 1 ≤ i < j ≤ n which minimizes the distance

Exhaustive search: compute all distances and output minimum one -
running time O(n2)

Can we do better?

Divide and conquer!
1 Vertical line Λ that separates points into 2 halves (left and right of Λ)

Use median finding algorithm from previous lecture.
2 Let L and R be the set of points to left and right of Λ, respectively
3 Solve closest pair for L and for R. Suppose the smallest distance δ is

between points of L.

Observation: only need to check if ∃ crossing pair with distance < δ

Could just pay attention to points with x-coordinate within δ to line
Λ... but still all points can be there...
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Closest pair - boxing up

Make δ/2× δ/2 boxes!

Each square box has ≤ 1 point from our set

Maximum distance inside square is δ/
√
2

Each point only needs to compute distances with points within two
horizontal layers

All other distances are > δ

Hence, each point needs only check its distance with ≤ 11 other
points!

Now we only need to check O(n) pairs
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Closest pair - boxing up

Make δ/2× δ/2 boxes!

Each square box has ≤ 1 point from our set

Maximum distance inside square is δ/
√
2

Each point only needs to compute distances with points within two
horizontal layers

All other distances are > δ

Hence, each point needs only check its distance with ≤ 11 other
points!

Now we only need to check O(n) pairs1

1Before boxing needed to check Ω(n2) pairs
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Algorithm
1 Find vertical line Λ

2 Recursively solve L,R subproblems

3 Linear scan to remove points > δ far (horizontally) from Λ

4 Sort points by y -coordinate, store them in array A

5 For each point in A, compute distances to next 11 points in A

6 Return minimum distance found.

Correctness: by arguments in previous slides.

Running time: (sorting in beginning)
We can first sort y -coordinates prior to recursing, and this sorted array
can still be used in recursion. Thus, running time (with sorted input):

T (n) = 2T (n/2) + O(n) ⇒ T (n) = O(n log n)

adding the time to sort doesn’t change total runtime.
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Non-dominated points
Given two points (x1, y1) and (x2, y2)

(x1, y1) dominates (x2, y2) if x1 > x2 and y1 > y2.

Input: set of n points S := {(x1, y1), . . . , (xn, yn)}
Output: all non-dominated points of S
Naive algorithm:

For each point (xi , yi ) check against all other points, if it is
dominated or not.

Running time: O(n2)

Can we do better?
Divide and conquer!

1 Sort points according to x-coordinate
2 Recursively solve two subproblems n/2 points to the left of middle

(denoted SL), n/2 points to the right of middle (denoted SR)
3 How do we combine?

(astute) Observation: no point in SL dominates a point in SR

Need to eliminate points from SL which are dominated by a point in SR

These must be the points with y -coordinate larger than the largest
height of SR !
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Non-dominated points
Input: set of n points S := {(x1, y1), . . . , (xn, yn)}
Output: all non-dominated points of S

Model: unit-cost model

Assumptions: (for simplicity) distinct x values

Naive algorithm:

For each point (xi , yi ) check against all other points, if it is
dominated or not.

Running time: O(n2)

Can we do better?
Divide and conquer!

1 Sort points according to x-coordinate
2 Recursively solve two subproblems n/2 points to the left of middle

(denoted SL), n/2 points to the right of middle (denoted SR)
3 How do we combine?

(astute) Observation: no point in SL dominates a point in SR

Need to eliminate points from SL which are dominated by a point in SR

These must be the points with y -coordinate larger than the largest
height of SR !
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Combining solutions to subproblems
Let NDL = [P1, . . . ,Pa] and NDR = [Q1, . . . ,Qb] be non-dominated
points of SL, SR , respectively, sorted by x-coordinate.

Must be the case that y(Q1) > y(Qj) for all j > 1!

Thus, only need to compare y(Pi ) with y(Q1)!

O(n) time to combine!

Algorithm
1 Sort points by x-coordinate
2 Recursively solve two subproblems n/2 points to the left of middle

(denoted SL), n/2 points to the right of middle (denoted SR)
3 Combine points as above (linear scan)
4 Output non-dominated points

Running time:
1 sorting O(n log n)
2 Recursion (for sorted input):

T (n) = 2T (n/2) + O(n) ⇒ T (n) = O(n log n)

3 Total runtime: O(n log n)
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