
Lecture 4: Divide and Conquer III

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

September 19, 2023

1 / 33



Overview

Closest Pair

Non-dominated points

Acknowledgements

2 / 33



Closest Pair

Input: n points (x1, y1), . . . , (xn, yn) ∈ R2

Output: indices 1 ≤ i < j ≤ n which minimizes the distance

Unit cost model!

Simplifying assumption: all x coordinates are distinct.

Exercise: remove this assumption, but preserve the running time.

Exhaustive search: compute all distances and output minimum one -
running time O(n2)

Can we do better?

Divide and conquer!
1 Vertical line Λ that separates points into 2 halves (left and right of Λ)

Use median finding algorithm from previous lecture.

2 Let L and R be the set of points to left and right of Λ, respectively
3 Solve closest pair for L and for R. Suppose the smallest distance δ is

between points of L.

3 / 33



Closest Pair

Input: n points (x1, y1), . . . , (xn, yn) ∈ R2

Output: indices 1 ≤ i < j ≤ n which minimizes the distance

Exhaustive search: compute all distances and output minimum one -
running time O(n2)

Can we do better?

Divide and conquer!
1 Vertical line Λ that separates points into 2 halves (left and right of Λ)

Use median finding algorithm from previous lecture.

2 Let L and R be the set of points to left and right of Λ, respectively
3 Solve closest pair for L and for R. Suppose the smallest distance δ is

between points of L.

4 / 33



Closest Pair

Input: n points (x1, y1), . . . , (xn, yn) ∈ R2

Output: indices 1 ≤ i < j ≤ n which minimizes the distance

Exhaustive search: compute all distances and output minimum one -
running time O(n2)

Can we do better?

Divide and conquer!
1 Vertical line Λ that separates points into 2 halves (left and right of Λ)

Use median finding algorithm from previous lecture.

2 Let L and R be the set of points to left and right of Λ, respectively
3 Solve closest pair for L and for R. Suppose the smallest distance δ is

between points of L.

5 / 33



Closest Pair

Input: n points (x1, y1), . . . , (xn, yn) ∈ R2

Output: indices 1 ≤ i < j ≤ n which minimizes the distance

Exhaustive search: compute all distances and output minimum one -
running time O(n2)

Can we do better?

Divide and conquer!
1 Vertical line Λ that separates points into 2 halves (left and right of Λ)

Use median finding algorithm from previous lecture.

2 Let L and R be the set of points to left and right of Λ, respectively
3 Solve closest pair for L and for R. Suppose the smallest distance δ is

between points of L.

6 / 33



Closest Pair

Input: n points (x1, y1), . . . , (xn, yn) ∈ R2

Output: indices 1 ≤ i < j ≤ n which minimizes the distance

Exhaustive search: compute all distances and output minimum one -
running time O(n2)

Can we do better?

Divide and conquer!
1 Vertical line Λ that separates points into 2 halves (left and right of Λ)

Use median finding algorithm from previous lecture.
2 Let L and R be the set of points to left and right of Λ, respectively

3 Solve closest pair for L and for R. Suppose the smallest distance δ is
between points of L.

7 / 33



Closest Pair

Input: n points (x1, y1), . . . , (xn, yn) ∈ R2

Output: indices 1 ≤ i < j ≤ n which minimizes the distance

Exhaustive search: compute all distances and output minimum one -
running time O(n2)

Can we do better?

Divide and conquer!
1 Vertical line Λ that separates points into 2 halves (left and right of Λ)

Use median finding algorithm from previous lecture.
2 Let L and R be the set of points to left and right of Λ, respectively
3 Solve closest pair for L and for R. Suppose the smallest distance δ is

between points of L.

Are we done?

8 / 33



Closest Pair

Input: n points (x1, y1), . . . , (xn, yn) ∈ R2

Output: indices 1 ≤ i < j ≤ n which minimizes the distance

Exhaustive search: compute all distances and output minimum one -
running time O(n2)

Can we do better?

Divide and conquer!
1 Vertical line Λ that separates points into 2 halves (left and right of Λ)

Use median finding algorithm from previous lecture.
2 Let L and R be the set of points to left and right of Λ, respectively
3 Solve closest pair for L and for R. Suppose the smallest distance δ is

between points of L.

Are we done?

Nope. Need to check if smallest distance is between points crossing
from L to R.

9 / 33



Closest Pair

Input: n points (x1, y1), . . . , (xn, yn) ∈ R2

Output: indices 1 ≤ i < j ≤ n which minimizes the distance

Exhaustive search: compute all distances and output minimum one -
running time O(n2)

Can we do better?

Divide and conquer!
1 Vertical line Λ that separates points into 2 halves (left and right of Λ)

Use median finding algorithm from previous lecture.
2 Let L and R be the set of points to left and right of Λ, respectively
3 Solve closest pair for L and for R. Suppose the smallest distance δ is

between points of L.

Are we done?

Nope. Need to check if smallest distance is between points crossing
from L to R.

Checking crossing pairs seems as hard as the original problem!

10 / 33



Closest Pair

Input: n points (x1, y1), . . . , (xn, yn) ∈ R2

Output: indices 1 ≤ i < j ≤ n which minimizes the distance

Exhaustive search: compute all distances and output minimum one -
running time O(n2)

Can we do better?

Divide and conquer!
1 Vertical line Λ that separates points into 2 halves (left and right of Λ)

Use median finding algorithm from previous lecture.
2 Let L and R be the set of points to left and right of Λ, respectively
3 Solve closest pair for L and for R. Suppose the smallest distance δ is

between points of L.

Observation: only need to check if ∃ crossing pair with distance < δ

11 / 33



Closest Pair

Input: n points (x1, y1), . . . , (xn, yn) ∈ R2

Output: indices 1 ≤ i < j ≤ n which minimizes the distance

Exhaustive search: compute all distances and output minimum one -
running time O(n2)

Can we do better?

Divide and conquer!
1 Vertical line Λ that separates points into 2 halves (left and right of Λ)

Use median finding algorithm from previous lecture.
2 Let L and R be the set of points to left and right of Λ, respectively
3 Solve closest pair for L and for R. Suppose the smallest distance δ is

between points of L.

Observation: only need to check if ∃ crossing pair with distance < δ

Could just pay attention to points with x-coordinate within δ to line
Λ... but still all points can be there...

12 / 33



Closest pair - boxing up

Make δ/2× δ/2 boxes!

Each square box has ≤ 1 point from our set

Maximum distance inside square is δ/
√
2

Each point only needs to compute distances with points within two
horizontal layers

All other distances are > δ

Hence, each point needs only check its distance with ≤ 11 other
points!

Now we only need to check O(n) pairs

13 / 33

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Closest pair - boxing up

Make δ/2× δ/2 boxes!

Each square box has ≤ 1 point from our set

Maximum distance inside square is δ/
√
2

Each point only needs to compute distances with points within two
horizontal layers

All other distances are > δ

Hence, each point needs only check its distance with ≤ 11 other
points!

Now we only need to check O(n) pairs

14 / 33

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Closest pair - boxing up

Make δ/2× δ/2 boxes!

Each square box has ≤ 1 point from our set

Maximum distance inside square is δ/
√
2

Each point only needs to compute distances with points within two
horizontal layers

All other distances are > δ

Hence, each point needs only check its distance with ≤ 11 other
points!

Now we only need to check O(n) pairs

15 / 33



Closest pair - boxing up

Make δ/2× δ/2 boxes!

Each square box has ≤ 1 point from our set

Maximum distance inside square is δ/
√
2

Each point only needs to compute distances with points within two
horizontal layers

All other distances are > δ

Hence, each point needs only check its distance with ≤ 11 other
points!

Now we only need to check O(n) pairs1

1Before boxing needed to check Ω(n2) pairs
16 / 33



Algorithm
1 Find vertical line Λ

2 Recursively solve L,R subproblems

3 Linear scan to remove points > δ far (horizontally) from Λ

4 Sort points by y -coordinate, store them in array A

5 For each point in A, compute distances to next 11 points in A

6 Return minimum distance found.

Correctness: by arguments in previous slides.

Running time: (sorting in beginning)
We can first sort y -coordinates prior to recursing, and this sorted array
can still be used in recursion. Thus, running time (with sorted input):

T (n) = 2T (n/2) + O(n) ⇒ T (n) = O(n log n)

adding the time to sort doesn’t change total runtime.

17 / 33



Algorithm
1 Find vertical line Λ

2 Recursively solve L,R subproblems

3 Linear scan to remove points > δ far (horizontally) from Λ

4 Sort points by y -coordinate, store them in array A

5 For each point in A, compute distances to next 11 points in A

6 Return minimum distance found.

Correctness: by arguments in previous slides.

Running time: (sorting in beginning)
We can first sort y -coordinates prior to recursing, and this sorted array
can still be used in recursion. Thus, running time (with sorted input):

T (n) = 2T (n/2) + O(n) ⇒ T (n) = O(n log n)

adding the time to sort doesn’t change total runtime.

18 / 33



Algorithm
1 Find vertical line Λ
2 Recursively solve L,R subproblems
3 Linear scan to remove points > δ far (horizontally) from Λ
4 Sort points by y -coordinate, store them in array A
5 For each point in A, compute distances to next 11 points in A
6 Return minimum distance found.

Correctness: by arguments in previous slides.

Running time: (naive)

T (n) = 2T (n/2) + O(n log n) ⇒ T (n) = O(n log2 n)

Running time: (sorting in beginning)
We can first sort y -coordinates prior to recursing, and this sorted array
can still be used in recursion. Thus, running time (with sorted input):

T (n) = 2T (n/2) + O(n) ⇒ T (n) = O(n log n)

adding the time to sort doesn’t change total runtime.

19 / 33



Algorithm
1 Find vertical line Λ

2 Recursively solve L,R subproblems

3 Linear scan to remove points > δ far (horizontally) from Λ

4 Sort points by y -coordinate, store them in array A

5 For each point in A, compute distances to next 11 points in A

6 Return minimum distance found.

Correctness: by arguments in previous slides.

Running time: (sorting in beginning)
We can first sort y -coordinates prior to recursing, and this sorted array
can still be used in recursion. Thus, running time (with sorted input):

T (n) = 2T (n/2) + O(n) ⇒ T (n) = O(n log n)

adding the time to sort doesn’t change total runtime.

20 / 33



Closest Pair

Non-dominated points

Acknowledgements

21 / 33



Non-dominated points
Given two points (x1, y1) and (x2, y2)

(x1, y1) dominates (x2, y2) if x1 > x2 and y1 > y2.

Input: set of n points S := {(x1, y1), . . . , (xn, yn)}
Output: all non-dominated points of S
Naive algorithm:

For each point (xi , yi ) check against all other points, if it is
dominated or not.

Running time: O(n2)

Can we do better?
Divide and conquer!

1 Sort points according to x-coordinate
2 Recursively solve two subproblems n/2 points to the left of middle

(denoted SL), n/2 points to the right of middle (denoted SR)
3 How do we combine?

(astute) Observation: no point in SL dominates a point in SR

Need to eliminate points from SL which are dominated by a point in SR

These must be the points with y -coordinate larger than the largest
height of SR !

22 / 33

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Non-dominated points
Input: set of n points S := {(x1, y1), . . . , (xn, yn)}
Output: all non-dominated points of S

Model: unit-cost model

Assumptions: (for simplicity) distinct x values

Naive algorithm:

For each point (xi , yi ) check against all other points, if it is
dominated or not.

Running time: O(n2)

Can we do better?
Divide and conquer!

1 Sort points according to x-coordinate
2 Recursively solve two subproblems n/2 points to the left of middle

(denoted SL), n/2 points to the right of middle (denoted SR)
3 How do we combine?

(astute) Observation: no point in SL dominates a point in SR

Need to eliminate points from SL which are dominated by a point in SR

These must be the points with y -coordinate larger than the largest
height of SR !

23 / 33



Non-dominated points

Input: set of n points S := {(x1, y1), . . . , (xn, yn)}
Output: all non-dominated points of S

Naive algorithm:

For each point (xi , yi ) check against all other points, if it is
dominated or not.

Running time: O(n2)

Can we do better?

Divide and conquer!
1 Sort points according to x-coordinate
2 Recursively solve two subproblems n/2 points to the left of middle

(denoted SL), n/2 points to the right of middle (denoted SR)
3 How do we combine?

(astute) Observation: no point in SL dominates a point in SR

Need to eliminate points from SL which are dominated by a point in SR

These must be the points with y -coordinate larger than the largest
height of SR !

24 / 33



Non-dominated points

Input: set of n points S := {(x1, y1), . . . , (xn, yn)}
Output: all non-dominated points of S

Naive algorithm:

For each point (xi , yi ) check against all other points, if it is
dominated or not.

Running time: O(n2)

Can we do better?

Divide and conquer!
1 Sort points according to x-coordinate
2 Recursively solve two subproblems n/2 points to the left of middle

(denoted SL), n/2 points to the right of middle (denoted SR)
3 How do we combine?

(astute) Observation: no point in SL dominates a point in SR

Need to eliminate points from SL which are dominated by a point in SR

These must be the points with y -coordinate larger than the largest
height of SR !

25 / 33



Non-dominated points

Input: set of n points S := {(x1, y1), . . . , (xn, yn)}
Output: all non-dominated points of S

Naive algorithm:

For each point (xi , yi ) check against all other points, if it is
dominated or not.

Running time: O(n2)

Can we do better?

Divide and conquer!
1 Sort points according to x-coordinate
2 Recursively solve two subproblems n/2 points to the left of middle

(denoted SL), n/2 points to the right of middle (denoted SR)
3 How do we combine?

(astute) Observation: no point in SL dominates a point in SR

Need to eliminate points from SL which are dominated by a point in SR

These must be the points with y -coordinate larger than the largest
height of SR !

26 / 33



Combining solutions to subproblems
Let NDL = [P1, . . . ,Pa] and NDR = [Q1, . . . ,Qb] be non-dominated
points of SL, SR , respectively, sorted by x-coordinate.

Must be the case that y(Q1) > y(Qj) for all j > 1!

Thus, only need to compare y(Pi ) with y(Q1)!

O(n) time to combine!

Algorithm
1 Sort points by x-coordinate
2 Recursively solve two subproblems n/2 points to the left of middle

(denoted SL), n/2 points to the right of middle (denoted SR)
3 Combine points as above (linear scan)
4 Output non-dominated points

Running time:
1 sorting O(n log n)
2 Recursion (for sorted input):

T (n) = 2T (n/2) + O(n) ⇒ T (n) = O(n log n)

3 Total runtime: O(n log n)

27 / 33



Combining solutions to subproblems
Let NDL = [P1, . . . ,Pa] and NDR = [Q1, . . . ,Qb] be non-dominated
points of SL, SR , respectively, sorted by x-coordinate.

Must be the case that y(Q1) > y(Qj) for all j > 1!

Thus, only need to compare y(Pi ) with y(Q1)!

O(n) time to combine!

Algorithm
1 Sort points by x-coordinate
2 Recursively solve two subproblems n/2 points to the left of middle

(denoted SL), n/2 points to the right of middle (denoted SR)
3 Combine points as above (linear scan)
4 Output non-dominated points

Running time:
1 sorting O(n log n)
2 Recursion (for sorted input):

T (n) = 2T (n/2) + O(n) ⇒ T (n) = O(n log n)

3 Total runtime: O(n log n)

28 / 33



Combining solutions to subproblems
Let NDL = [P1, . . . ,Pa] and NDR = [Q1, . . . ,Qb] be non-dominated
points of SL, SR , respectively, sorted by x-coordinate.

Must be the case that y(Q1) > y(Qj) for all j > 1!

Thus, only need to compare y(Pi ) with y(Q1)!

O(n) time to combine!

Algorithm
1 Sort points by x-coordinate
2 Recursively solve two subproblems n/2 points to the left of middle

(denoted SL), n/2 points to the right of middle (denoted SR)
3 Combine points as above (linear scan)
4 Output non-dominated points

Running time:
1 sorting O(n log n)
2 Recursion (for sorted input):

T (n) = 2T (n/2) + O(n) ⇒ T (n) = O(n log n)

3 Total runtime: O(n log n)

29 / 33



Combining solutions to subproblems
Let NDL = [P1, . . . ,Pa] and NDR = [Q1, . . . ,Qb] be non-dominated
points of SL, SR , respectively, sorted by x-coordinate.

Must be the case that y(Q1) > y(Qj) for all j > 1!

Thus, only need to compare y(Pi ) with y(Q1)!

O(n) time to combine!

Algorithm
1 Sort points by x-coordinate
2 Recursively solve two subproblems n/2 points to the left of middle

(denoted SL), n/2 points to the right of middle (denoted SR)
3 Combine points as above (linear scan)
4 Output non-dominated points

Running time:
1 sorting O(n log n)
2 Recursion (for sorted input):

T (n) = 2T (n/2) + O(n) ⇒ T (n) = O(n log n)

3 Total runtime: O(n log n)

30 / 33



Combining solutions to subproblems
Let NDL = [P1, . . . ,Pa] and NDR = [Q1, . . . ,Qb] be non-dominated
points of SL, SR , respectively, sorted by x-coordinate.

Must be the case that y(Q1) > y(Qj) for all j > 1!

Thus, only need to compare y(Pi ) with y(Q1)!

O(n) time to combine!

Algorithm
1 Sort points by x-coordinate
2 Recursively solve two subproblems n/2 points to the left of middle

(denoted SL), n/2 points to the right of middle (denoted SR)
3 Combine points as above (linear scan)
4 Output non-dominated points

Running time:
1 sorting O(n log n)
2 Recursion (for sorted input):

T (n) = 2T (n/2) + O(n) ⇒ T (n) = O(n log n)

3 Total runtime: O(n log n)
31 / 33



Acknowledgement

Based on Prof. Lau’s lecture 4

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L04.pdf

Based on Prof. Brown’s lecture (see course webpage)

32 / 33

https://cs.uwaterloo.ca/~lapchi/cs341/notes/L04.pdf


References I

Kleinberg, John and Tardos, Eva (2006)

Algorithm Design.

Addison Wesley

33 / 33


	Closest Pair
	Non-dominated points
	Acknowledgements

