
CS 106 Winter 2016
Craig S. Kaplan

Module 01

Processing Recap

Topics

• The basic “parts of speech” in a Processing
program

• Scope
• Review of syntax for classes and objects

Readings

• Your CS 105 notes
• Learning Processing, Chapters 4–9

d
Introduction

Let’s review the main components of a Processing
program. A quick review will help remind you of the
ways that these pieces can fit together, and provide
terminology that might reappear a few times during
the term.

Make no mistake, creating an effective programming
language is a design problem. That helps to explain
why, as with the rest of the world of design, languages
come in many styles, with different levels of popularity
and fandom. If you’re interested in thinking about the
challenges in designing programming languages, I
recommend Guy L. Steele’s talk “Growing a
Language”.

d

Values

A value is any piece of information that can be
manipulated by a running Processing program. Every

https://www.youtube.com/watch?v=_ahvzDzKdB0

program does what it does by creating values, moving
them around, turning them into new values, etc.
Simple values are things like numbers (0, 3.14159) and
booleans (true, false). A string (a block of text) is a
more complicated value because we don’t know how
big it might be.

Some values can be seen as “compounds”, bags of
simpler values. An array is a value that holds a
sequence of other values, which you can look up by
an index. All objects, images, even the whole running
sketch, are represented inside Processing as big
complicated values.

d
Types

Every value in Processing belongs to a type, a
collection of values that have similar behaviour and
structure. For example, all whole numbers (0, 1, -4,
99…) belong to a type called int. Other important
types in Processing include float, boolean, and String.
The type void is special: it has no values, and is used
to describe functions that don’t give you back any
information when you call them (ellipse(), for
example).

If X is a type in Processing, then X[] is a new type
“array-of-X”. You don’t even need to know anything
about X in order to talk about arrays of them.

d
Expressions

An expression is any bit of code in a Processing
program that produces a value when you execute it.
We might also say that an expression “yields” a value.

The very simplest expressions are literally just literal
descriptions of values, literally called literals. They
produce themselves when executed—the text 37 is a

very simple literal expression that yields the value 37.
A variable name like width is slightly more
complicated. It looks as simple as a literal, but when
the program runs we need to look up the value
currently being held in that variable. And of course, a
variable can hold different values at different times.
That’s why we need to distinguish between variable
names and values.

There are many ways to combine simple expressions
into more complicated ones. For example, any two
expressions that describe numbers can be added
together, giving a new expression that also describes
a number. This ability to combine extends to lots of
other operations in Processing: mathematical
operators like -, /, and *, the square brackets used to
look things up in arrays, the syntax for calling
functions, and so on. The ability to nest expressions
arbitrarily inside of other expressions like this is a Big
Idea in programming.

Here’s a handy rule of thumb: if you can put a piece of
code inside of a println(), then that code is an
expression.

d
Statements

A statement is a bit of code that does something, that
alters the internal state of a running program. When I
write a line like

my goal is to permanently change the program by
throwing out whatever value is currently stored in the
variable a, and putting the value 5 in its place. If I ask
for an ellipse to be drawn with

a = 5;

ellipse(50, 50, 100, 100);

I’m not expecting the function call to give me an
answer; I want Processing to do something to the
screen.

Like expressions, some statements can be more
complicated structures made out of smaller pieces.
Most obviously, if, while and for are all keywords that
introduce compound statements.

d
Declarations

A declaration is a piece of code that introduces a new
name into the program. The simplest declarations
create new variables. Thus I can write

and from that point onward (at least until the
variables go out of scope!), the names a and b mean
something in the program. The second declaration
above also includes an initialization expression.

Of course, it’s also possible to declare functions:

This declaration makes the name distance available for
the rest of the program. It also introduces four
parameter names x1, y1, x2 and y2, which are visible
only inside the body of the function.

int a;
float b = 3.14;

float distance(
 float x1, float y1, float x2, float y2)
{
 return sqrt(sq(x1 - x2) + sq(y1 - y2));
}

The most complicated declarations are class
declarations. They introduce a new type into a
Processing program. Inside that class, we may declare
an arbitrary set of new fields and methods (which are
the inside-a-class analogues of variables and
functions). A simple class declaration might look like
this:

Here we introduce a new type called Point. Every Point
has fields x and y, a method magnitude(), and a special
method called a constructor (whose name is the same
as the name of the type). Class declarations are the
basis for object-oriented programming.

d
Scope

Every declaration is confined to live within a definite
scope, a range of the text of the program where that
declaration is visible and can be referred to. For
example, if you declare a variable at the “top level” of
a sketch, it’s visible everywhere in the sketch, unless
some other scope inside the sketch decides to define
its own variable of the same name. On the other hand,
a variable declared inside of a function is only visible

class Point
{
 float x;
 float y;

 Point(float xx, float yy)
 {
 // ...
 }

 float magnitude()
 {
 // ...
 }
}

in the body of that function, and doesn’t have
meaning to the outside world.

Scopes can be nested inside of other scopes. As a rule
of thumb, just about any time you see an open curly
brace (a { character), it represents the start of a new
scope in which you can declare new variables. That
means that the bodies of functions and methods are
nested scopes, as are the insides of blocks of code in
if statements and for and while loops.

We’re not going to spend too much time this term
worrying about scope. But it’s important to be aware
of the concept, since misunderstanding of scopes can
be the cause of some programming errors. See
Section 6.5 of Learning Processing for a few more
details about scope.

d
Program

A program is a sequence of declarations. That’s it! The
only thing you’re allowed to do at the top level in a
Processing program (assuming we’re not using
“immediate mode”) is to declare things. If that’s the
case, how does any work ever get done? Well,
Processing expects you to write functions with certain
agreed-upon names—most obviously, setup() and
draw(). If you write those functions, Processing
promises to call them at appropriate times. We
sometimes refer to such functions as “hooks”.

d
Classes and objects

Working with classes requires the use of a few special
bits of syntax. Let’s review them briefly (review
Chapter 8 of Learning Processing for a more in-depth
discussion of classes).

We use the special keyword new to create objects:

Immediately after new, you write the name of the class
you want to create an instance (i.e., a new object) of.
Then you put some arguments in parentheses, as you
would if you were calling a function. These arguments
are passed to the class’s constructor.

Once we have an instance, we can use “dot notation”
to reach inside that instance, look at its fields and call
its methods.

On the left of the dot, we write any expression that
names an instance of a class. It could be something
simple like a variable name, as above, or a more
complicated expression like looking up an instance in
an array. On the right we put the name of a field or
method.

There are two special names to be aware of in the
context of objects and classes:

• null is a special value that belongs to every class,
meaning “no legal object”. It’s the default value for
variables of class type, and it’s distinct from every
possible legal instance of that class. (See Page 146
of Learning Processing.)

• Inside of any method of any class, you’re allowed
to use the magic keyword this, which means “the
instance that this method was called on”. In the
code p.magnitude() above, we can think of “sending
the magnitude message to the object referred to by
p”. Then, inside the body of the magnitude()
method, the name this will refer to that object.
Sorry, what? Yes, this is confusing, and Learning
Processing avoids mentioning it until Page 330. It’s
an ugly wart in Processing, a place where they
expose the messy Java infrastructure that powers

Point p = new Point(3, 4);

println(p.x);
p.x = q.y;

float m = p.magnitude();

Processing in a way that would best be left hidden.
We won’t ever have to write our own code that
does real work with this, but when we start
working with external libraries we’ll occasionally
have to refer to it.

