
CS 106 Winter 2016
Craig S. Kaplan

Module 02

Input and Output

Topics

• Reading and displaying images and illustrations
• Writing images, illustrations, and animations
• Reading text
• Writing text

Readings

• Learning Processing, Sections 15.1, 18.3, 18.4, 21.3,
21.4

d
Introduction

So far, nearly everything you’ve done in Processing
has been self-contained. To create practical tools, we
need ways to exchange information with the outside
world.

Most computer systems are backed by a filesystem, a
place where files can be stored more permanently.
Modern filesystems are very large and very
complicated. Here’s what my computer says about the
size and number of files in my home directory:

There are other reasons why filesystems are complex:

• They’re usually heterogeneous: your files can be
stored across multiple physical devices, including “in
the cloud”.

• The organization of your files (and even their names)
depends very heavily on your operating system.
Mac is very different from Windows, and iOS is very
different from Android, and it’s annoying to write
code that knows about all these differences.

This complexity is antithetical to the spirit of
Processing. So Processing offers us a way of hiding
most of the complexity when programming, by having
your sketch folder serve as a gateway to the outside
world. By default, when you ask to read a file,
Processing looks for that file in your sketch folder;
when you write a file, it puts the output in your sketch
folder. The easiest way to access your sketch folder is
from within the Processing environment:

d
Reading images

At the end of CS 105 you learned how to load images
into Processing. First you need to move or copy the
image into your sketch folder. That’s most easily done
using the “Add File...” command in the “Sketch”
Processing menu.

It’s possible to ask Processing to
open any file at all, if you know
the file’s “absolute path”. We
won’t need to do that in this
course. Usually, it’s also possible
to pass in a URL instead of a
filename, in which case the file
will be downloaded from the
web. We’ll probably see that later
in the course.

“Add File...” will actually put files
in a “data” subfolder of the
sketch folder, creating that folder
if necessary. In fact, it doesn’t
matter: Processing will look for
files in both the main sketch
folder and the data subfolder, if it
exists.

Use the built-in function loadImage(), passing in a
String with the name of an image file as input, to read
an image into a sketch. You’ll get back an object of
type PImage. If the filename doesn’t exist, you’ll get
back null and Processing will print a warning message
to the Console. But the program won’t stop—you can
keep doing things, as long as you don’t try to draw
the null image! See the ExtraExtra sketch in Lab 00
for an example of this.

The most common practice is to define a global
variable of type PImage and set that variable to the
result of loading an image in your setup() function.
Then, you can use the built-in image() function to
display an image at any position in your sketch,
optionally rescaling it to fit any rectangle. See the
reference documentation for PImage for information on
other things you can do with images (notably, find out
an image’s width and height, and read its pixels one-
by-one).

d
Reading illustrations

If you’ve used illustration software like Adobe
Illustrator, you know that vector graphic images are
very important in art and design, in addition to plain
old pixels. It would be nice to have a way to import
vector illustrations directly into Processing, without
having to convert them into raster images (i.e., pixels)
first.

Fortunately, this turns out to be as easy as working
with raster images. In fact, most of the time you can
simply replace “image” with “shape” in the previously
mentioned functions for dealing with images:

PImage ⟺ PShape
loadImage() ⟺ loadShape()

image() ⟺ shape()

Example sketch: TintGrid

If you call loadImage() in draw()
instead, most likely everything
will continue to work, but your
program will be slower because
you’re re-reading the image from
the filesystem every frame. Most
of the time that’s not what you
want!

Processing’s SVG support is good
but incomplete. It’s a good idea
to stick to the most common
parts of the SVG standard.

Processing definitely doesn’t
understand embedded CSS used
to style SVG paths. When saving
from Illustrator, I had to set “CSS
Properties” to “Style Attributes”
under advanced SVG saving
options in order to make sure it
didn’t use any CSS.

https://processing.org/reference/PImage.html

Processing uses SVG as its native vector illustration
format. If you have an illustration in another format
(PS, EPS, PDF, etc.), it’s fairly easy to find software to
convert to SVG. See the reference documentation for
PShape for more information on working with
illustrations. I can imagine that the disableStyle()
method might occasionally be useful.

d
Writing images

It’s incredibly easy to save a “screenshot” of a running
sketch, i.e., the current contents of the sketch window.
Just use the built-in function save(), passing in the
name of the file you wish to save to. I recommend
saving to images in PNG format.

You can also use the built-in function saveFrame(),
which chooses sequential filenames for you. This
could be useful for stitching saved images together
into an animation using heavy-duty software like
Adobe Premiere, or a simple tool like the “Movie
Maker’ built in to Processing.

Example sketch: DisplaySVG

Example sketch: Moustachify

void keyPressed()
{
 if(key == 's') {
 save("screen.png");
 }
}

You could add this code fragment to
just about any sketch to add in a handy
screenshot feature (assuming it doesn’t
already have a keyPressed() function).

It turns out that loadShape()
can also be used to load 3D
meshes in the Wavefront OBJ
format! 3D is much more
complicated to work with, but I
might get to it later in the term.

d
Writing illustrations

So far we can read and write images, and read
illustrations. We should fill in the obvious gap, and
learn how to create new vector illustrations from
within a Processing sketch.

Happily, this turns out to be very easy in Processing,
using the PDF library that ships with Processing. This
library is stored “off to the side” in Processing—you
must explicitly ask for the features of the library to be
brought into your sketch, otherwise they won’t be
available. To do so, we use an import directive. The
directive for the PDF library looks like this:

An import directive is a feature that Processing
inherited from Java. It finds all the declarations in an
external library, and makes them available in the
current sketch. Without the import, your sketch won’t
have access to the features of the library, even if you
know they’re out there somewhere. Most libraries
include documentation that tell you what you need to
import.

Once you’ve got the PDF library imported, a line like

Is more or less all you need to get started. This line of
code causes all subsequent drawing functions (e.g.,
line(), ellipse()) to silently draw a second copy of
themselves in the output file. And unlike the sketch
window, these versions are true vector graphic
elements: pure, scalable geometry. The only other
step is to stop recording when you’re done drawing:

import processing.pdf.*;

beginRecord(PDF, "output.pdf");

endRecord();

Here, at last, is a great way to incorporate Processing
into a graphic design pipeline: write a sketch that
solves some particular design problem, and load the
output into software like Adobe Illustrator for further
editing. I have created similar programs many times as
part of my research.

Of course, you probably don’t want to start and stop
recording to an external PDF in every frame of a
sketch. In practice you should either record a single
time and then stop the sketch, or else have a way to
record specifically when requested by the user (for
example, when a key is pressed). That requires just a
bit of extra code in most sketches.

As of Processing 3.0, it’s possible to save SVG files in
addition to PDF. The process is nearly identical to the
one above. Just use

And substitute SVG for PDF when calling the
beginRecord() function.

d
Writing text

So far, all the reading and writing we’ve been doing
have been based on well-known file formats (e.g.
JPEG, GIF, SVG, PDF), and we have relied on other
code to serve as an intermediary in making sense of
files in those formats for us. Sometimes, though, we
have information we want to save for later for which
there is no specific format. In those cases, it’s usually

Example sketch: RecordPDF

import processing.svg.*;

simplest to write out plain text. Fortunately, this is
easy in Processing as well—it looks a lot like the
familiar println() function.

As you know, println() sends its output to the
Console window underneath your sketch’s source
code. It’s possible to create other objects that can
receive println() messages:

A PrintWriter is an object that understands println(),
but that sends its output directly to a file. Note that
you need to say writer.println() for a particular
object writer to send text to that writer’s file. If you
continue to use regular println(), text will go to the
Console, as before. In fact you could have many
PrintWriter objects active at once, all writing to their
own files.

When you’re done writing, you need to call the flush()
method to make sure the PrintWriter isn’t holding any
part of your file in memory instead of on disk, and
then call close() to tell Processing you’re done with
the file.

d
Reading text

Yes, there is a createReader() function that fits nicely
with createWriter(). But I’m not going to teach that
approach. The problem is that in order to read files
that way, you need to be aware of exception handling

void setup()
{
 PrintWriter writer = createWriter("output.txt");
 writer.println("This will go directly into the file.");
 writer.println("So will the number below:");
 writer.println(3.1415926);
 println("But this will still be printed to the Console.");
 writer.flush();
 writer.close();
 exit();
}

(i.e., try and catch), an advanced programming
technique.

Fortunately, we can skip that messiness with the much
simpler built-in function loadStrings(). You call
loadStrings() with the name of the file to be read, and
get back an array of Strings, each of which contains
exactly one line from the file. It’s up to you to decide
how to interpret those strings.

d
Applications of input/output

Here are just a few sample uses of input/output.

• Logging: Sometimes, it isn’t enough to write
debugging information or other status messages to
the Processing Console. The information can scroll
too fast and be lost, or there could simply be too
much of it to read comfortably in that tiny window. It
can sometimes be useful to generate a huge torrent
of information into an external file, which you can
then examine later at your leisure. This can be a
valuable way to find bugs in complex programs,
since you have a detailed record of what happened.
Many software tools you use regularly leave behind
logs, even if you never see them. In OSX, have a look
in “Library/Logs” inside your home directory.

• Persistence: One use of persistence is to keep track
of enough of a running program’s state that you can
jump back into that state if a program is stopped
and restarted. Before a program halts, you write the
current state out to a file. At startup, you check if
that file exists and use it to reconstruct the state if it
does. This is a common idiom. On mobile devices,
you can save energy by terminating apps when the
user isn’t actively interacting with them. Persistence
allows those apps to come back to life seamlessly.

• Data visualization: If you generate data from some
other source, Processing can be a good way to load
that data and create novel visualizations of it. Later
we’ll see how to read CSV (comma-separated

If it matters, reading and writing
of text files is actually done in
UTF-8 encoding, so you can
safely use Unicode if you want.

values) files, which would allow you to draw your
own custom charts and graphics based on Excel
spreadsheets.

