
CS 106 Winter 2016 
Craig S. Kaplan 

Module 03 

Graphical User Interfaces 

Topics 

• The model-view-controller paradigm 
• Direct manipulation 
• User interface toolkits 
• Building interfaces with ControlP5 

Readings 

• None 

d 
Introduction 

A program’s user interface comprises all the 
mechanisms by which we tell the program what we 
want to it to do while it’s running, and all the 
mechanisms the program uses to give us feedback on 
what it’s doing. 

You’ve learned quite a bit about how to coax rich 
visual output from Processing, which is half of the 
equation. But we’ve seen very little about how to talk 
back to our sketches. This is an important step in our 
ability to create fancier software—there’s only so 
much intuitive control you can get out of the 
keyboard together with mouseX and mouseY. 

This is an enormous, deep topic. We teach two 
undergraduate CS courses on user interfaces, and 
Human-Computer Interaction (HCI) is a very active 
area of CS research. I can’t hope to cover this area in 
any significant detail. I won’t say much about effective 
user interface design. My main goal is to give you a 
look at user interfaces from a programmer’s point of 
view, so that you know what’s possible, so that you 
can add more control to your sketches, and so that 



you can gain better understanding of the interfaces in 
your world. 

d  
The Model-View-Controller paradigm 

There are many ways to think about the structure of 
an interactive program. The most established 
paradigm is called “model-view-controller”, or MVC. A 
program that uses an MVC architecture can be 
decomposed into three main components: 

• The model is the underlying collection of 
information that the program is about. In a text 
editor, the model is a string of characters. In an 
image editor, it’s the image, and so on. 

• The view is the means by which the program shows 
us the current state of the model. 

• The controller is the set of controls through which 
the user operates the program (i.e., manipulates the 
model). 

The arrows in the diagram are significant: the 
controller makes changes to the model, and the model 
notifies the view that it should update itself. (We 
could augment the diagram with a user, who 
perceives the view and operates the controller, 
thereby creating a closed loop; but we don’t need to 
write code to control the user!) 

Most frameworks for writing apps are built around an 
explicit breakdown of functionality into views and 
controllers, and leave the model up to the 

MODEL

VIEW CONTROLLER

We could think of the controller 
as being physical devices like the 
keyboard and mouse, but it’s 
more useful to think of it as the 
code that processes information 
from those devices.



programmer. Mostly, though, it’s a paradigm: a way of 
thinking about programming. 

MVC is useful because it decouples the components 
of your program—it forces you to think about 
partitioning your code, which gives you more 
flexibility. If the model knows too much about the 
view, then it’s hard to add in new views, or have 
multiple views operating at the same time. Similarly, if 
the model knows about only one controller, it’s hard to 
adapt to new input devices or on-screen widgets. In 
an ideal world, the model doesn’t need to know 
anything at all about the view or controller. 

  

In a Processing sketch, the model is the information 
being stored (mostly likely, the global variables). The 
view is the sketch window. The controller is the 
functionality you create to respond to events. 

With colour selectors, the model is an RGB colour, but there are 
many possible controllers (and views).

Example sketch: SimplestMVC



  

d  
Direct manipulation 

In a direct manipulation interface, the view and 
controller are tightly linked. The view is a concrete 
visual representation of the model, decorated with 
user interface “handles”. These handles can be 
manipulated to edit the model continuously and 
incrementally. We might interpret direct manipulation 
as a thinner, more immediate physical interaction 
metaphor: when you want to change your model, you 
reach out and touch it. 

Direct manipulation relies on hit testing: checking 
whether a given mouse position lies within the 
responsive area of a given handle. You saw a hint of 
hit testing in CS 105 (checking if a point lies within a 
circle). If we choose handles with simple shapes, their 
hit tests will hopefully be simple too. 

color the_colour;

void setup()
{
size( 200, 200 );

}

void draw()
{
background( the_colour );

}

void mouseMoved()
{
int b = int( map( mouseX, 0, width, 0, 255 ) );
the_colour = color( b );

}

MODEL

VIEW

CONTROLLER

Example sketch: DirectManipDot



When there are multiple independent handles in the 
interface, the code will take on a consistent structure: 
• We maintain a list (say, an array) of all the handles 

in the program. 
• We also maintain a global variable to remember 

which handle is currently being manipulated, if any. 
In an object-oriented interface we might point right 
to the active handle. Or we might use an index into 
the array above. 

• In the draw() function, we walk over the list, asking 
all the handles to draw themselves. 

• In a mousePressed() function, we walk over the list, 
performing a hit test on each handle until we find 
one that overlaps the mouse location. We must be 
careful about order when there are overlaps: 
handles will be drawn back-to-front, but we should 
check them front-to-back! 

• In a mouseDragged() function, we update the position 
of the currently active handle, if there is one. 

• In mouseReleased(), we make sure to reset the state 
of the program so that no handle is currently being 
manipulated.

Hit testing can be tricky for some handles. If we want 
to move thin lines around, we might define a “halo” 
around the line that responds to mouse events. If 
objects have complicated shapes, their hit tests might 
be complicated too. One way around that is to put a 
complicated shape inside a simpler one like a box, and 
respond to events anywhere in that box. 

A fancier approach is to paint a secondary image that 
never gets shown on the screen (using the PGraphics 
class in Processing), in which every handle is drawn 
with a solid colour that tells us its identity. Then, when 
we receive a mouse press, we check the colour of the 
pixel at the mouse location in the off-screen image, 
and use that to deduce which handle was touched. 
 

Example sketch: DirectManipMulti

Example sketch: DirectManipBezier



d 
User interface toolkits 

There’s a characteristic set of interactions that we 
typically want to carry out when communicating with 
a program: 

• Perform an action (e.g., click an OK button) 
• Select from among a set of choices 
• Adjust a continuous value within a range 
• Enter some text 

Clicking an on-screen button is a good way to ask a 
program to perform a discrete action. You could code 
that yourself, but the low-level behaviour of a button 
is actually pretty subtle—it takes a huge amount of 
programming to get it right. Pick a button in your 
favourite application, and explore how it responds to 
unusual interactions! 

It’s only natural then that programmers like to make 
use of toolkits, standardized sets of reusable, modular, 
programmable widgets. They greatly reduce 
programmer effort while simultaneously guaranteeing 
greater consistency across apps. Users quickly learn 
the visual language of sets of widgets. 

Typical toolkits are AWT and Swing in Java, Qt and 
Gtk in the open-source world, Apple’s UIKit 
framework, and HTML forms. 

d  
ControlP5 

User interface toolkits are often very large and 
complex, and require a moderate amount of 
knowledge and programming (or the use of auxiliary 
interface authoring tools). The ControlP5 library is 

Example sketch: Jigsaw



designed to be a slimmed-down toolkit for use within 
Processing sketches. 

As this point, things get more boring: the library’s out 
there, we just need to read its documentation, look at 
example code, and learn how to speak its language. 

As with the libraries we saw in Module 02, the first 
step is to install ControlP5. Then we can declare our 
intention to use it in a sketch: 

Next we need to create a global variable that 
represents the user interface subsystem, and initialize 
it in the setup() function. 

Now it’s easy to add new user interface widgets to a 
sketch. The ControlP5 object (ui in this case) responds 
to a bunch of messages with names like addButton(), 
addKnob(), and addSlider(). These functions will create 
the appropriate controllers and make them visible in 
the sketch. 

If you want, you can store the result of a function like 
addButton() to a local or global variable, so that you 
can refer to it later. 

Once you assign the controller to a variable (quit in 
this case), you can send it a sequence of messages to 
ask it to configure itself. 

import controlP5.*;

ControlP5 ui; 

void setup() 
{ 
  size( 500, 500 ); 
  ui = new ControlP5( this ); 
}

Button quit = ui.addButton( "Quit" );

quit.setPosition(100,100); 
quit.setSize(200,19);

Here’s an example where we 
have no alternative but to use the 
keyword this. The ControlP5 
library needs to know about the 
sketch that it’ll be running in.

ControlP5 does some clever 
behind-the-scenes trickery to 
ensure that its controllers get 
drawn on top of your sketch. You 
don’t have to do anything 
yourself. But you do need a 
draw() function, even an empty 
one, otherwise ControlP5 never 
told to draw the interface.

http://www.sojamo.de/libraries/controlP5/


ControlP5 also offers a neat trick for setting a bunch 
of properties at once. The property setting functions 
all re-return the passed-in controller, to which you can 
then send more messages. 

Admittedly, that trick is perhaps too neat: it uses non-
obvious language features to work. You can ignore the 
fact that you don’t yet know why this works and just 
use it anyway.  Or if it makes you uncomfortable you 
can use a sequence of independent message calls, as 
in the example before this one. 

The last step in setting up a ControlP5 interface is to 
add behaviour to the widgets. The toolkit looks for a 
new hook function called controlEvent(), similar to 
keyPressed() or mouseDragged(). You write a 
controlEvent() function, which receives notification 
when the user interacts with any widget. The function 
is passed information about which widget was the 
target of the interaction: 

The most reliable way to find out who was the target 
of the event is to use the isFrom() message, which 
returns a boolean that tells you whether the passed-in 

Button quit = ui.addButton( "Quit" ) 
  .setValue(0) 
  .setPosition(100,100) 
  .setSize(200,19);

Don’t be alarmed by the odd formatting here. 
It’s the same mechanism of sending a message 
to an object, rewritten to emphasize that we’re 

setting a bunch of properties in sequence.

public void controlEvent(ControlEvent ev) { 
  println(ev.getController().getName()); 
} 

This event handler only prints the name of the 
controller that received the event. But of course, you 
can use the controller’s identity or name to decide 

what to do with the event.

ControlP5 offers another clever 
hack here: you can also define 
specific event handler functions 
based on the name of the widget 
you created. I won’t talk about 
that in class, but you can 
experiment with it if you want.



controller was indeed the place where the event 
happened.  

 

 

 

d  
Beyond widgets 

A toolkit is a great way to get a lot of functionality 
into the hands of the user quickly and easily. But it’s 
not the necessarily the best approach. Many UI 
designers believe in the motto “less is more”: no 
matter how good your interface is, there could always 
be less of it. 

One way to curb the runaway proliferation of menus 
and toolbars is better user modelling: if you 
understand what actions the user will perform and in 
what order, you can streamline the interface to 
support those actions. 

As computations becomes cheaper, sensing 
technology gets better, and devices without 
keyboards gain in popularity, we’re also starting to see 
many tools for more naturalistic interfaces: 

if( ev.isFrom( quit ) ) { 
  println( "Quitting time!" ); 
  exit(); 
}

Example sketch: SimplestToolkit

Example sketch: ThreeButtons

Example sketch: FancyButtons

Example sketch: BusyBox

Too many of the web-based 
interfaces at our university are 
designed around creating one 
widget for each piece of data in a 
database, instead of modelling 
the typical workflows that users 
will want.



• Gestural interfaces allow the user to express 
commands with looser, more fluid motions.  The 
system must work harder to interpret which gestures 
have been given and what they mean. 

• Multitouch interfaces have more or less become the 
norm for mobile devices in the past ten years. These 
devices can identify and track multiple touch points 
simultaneously, further enriching the gestural 
vocabulary that’s possible. Processing has a useful 
library for multitouch interaction, written in part by 
UW researchers. 

• Voice interfaces get gradually more popular as 
speech recognition gets better. (But I’m not sure 
voice control is useful in the context of Processing 
sketches.) 

• 3D interfaces such as the WiiMote, Kinect, and Leap 
Motion, permit the whole body to be used as an 
interaction device. This is great for games; the full 
potential of these devices in desktop interaction has 
probably not been fully realized yet. 

• Eye tracking is slowly becoming more affordable, 
and promises to be very useful for interaction. 

• Other sensors, particularly on mobile devices, can 
detect interesting new forms of interaction such as 
tilting and shaking (not to mention geographic 
location). See also the Myo Armband, by UW startup 
Thalmic Labs.

https://www.thalmic.com/

