
CS 106 Winter 2016
Craig S. Kaplan

Module 05

Geometric Context
Topics

• Using the translate(), rotate() and scale() functions
to manipulate geometric context

• Using pushMatrix() and popMatrix() to preserve (and
discard) context

• Combining multiple transformations, order of
operations

• Nesting transformations and hierarchical modelling
• Special effects from iterated transformations

Readings

• Learning Processing, Sections 14.1, 14.5, 14.7, 14.8,
14.9

d
Introduction

Let’s begin with a simple programming task that will
demonstrate the benefits of “geometric context”.
You’re asked to create a sketch that draws a simple
house in the middle of the sketch window. After a bit
of thought, you come up with the following code.

Everything’s great, until you’re asked to move the
house slightly to the left. That small change forces you
to rewrite every line of code that has coordinates in it.
That’s both frustrating (there could be many lines of
code affected) and confusing (did you remember to
change all three X coordinates in the call to
triangle()? And who knows if the person asking will
be satisfied—maybe they’ll want to move it yet again.

Of course, with a bit of programming skill we can take
an important conceptual leap. Let’s add arguments to
the drawHouse() function that allow the house to be
moved around.

void setup()
{
 size(500, 500);
}

void drawHouse()
{
 fill(#BFB375);
 rect(150, 200, 200, 150);

 fill(#3E362F);
 triangle(
 250, 100, 120, 200, 380, 200);
}

void draw()
{
 background(255);
 drawHouse();
}

That’s definitely better for our picky customer: the
exact position of the house is determined in just one
place, and can easily be adjusted with low risk of
introducing bugs. Plus, there’s another big benefit that
we get immediately: we can easily draw multiple
houses by adding just one line of code each time.

Once we accept that the “caller” of drawHouse() will
decide where to put the house, doesn’t it make more
sense to build the house in a more convenient
coordinate system? Instead of being forced to think
about the coordinates of the window where the house
will be drawn, I’d prefer to envision it in a coordinate
system that’s convenient for house-design purposes.

void setup()
{
 size(500, 500);
}

void drawHouse(float tx, float ty)
{
 // Facade
 fill(#BFB375);
 rect(150+tx, 200+ty, 200, 150);

 // Roof
 fill(#3E362F);
 triangle(
 250+tx, 100+ty,
 120+tx, 200+ty,
 380+tx, 200+ty);
}

void draw()
{
 background(255);
 drawHouse(-20, 0);
}

x
y
(0,0)

This code has the advantage that the “position” of the
house (i.e., the values we pass in as arguments to
drawHouse()) is defined relative to a useful part of the
house drawing itself: the bottom centre. That makes it
easier to visualize where we’re putting it. And don’t
worry, we’ll simplify the code further soon.

What if the picky customer also wanted to scale the
house? Well, we can certainly imagine adding a
scaling argument to drawHouse(), to go along with the
translation arguments. But the code is going to get
very messy very quickly. But the real problems will
start when we try to incorporate rotation as well:

• For starters, every function in the style of
drawHouse() will require five parameters: two for
translation, two for scaling, and one for rotation.
That gets old very fast.

• Every time we want to place a point in the plane,
we’ll have to transform from “object coordinates” to

void setup()
{
 size(500, 500);
}

void drawHouse(float tx, float ty)
{
 // Facade
 fill(#BFB375);
 rect(-100+tx, -150+ty, 200, 150);

 // Roof
 fill(#3E362F);
 triangle(
 tx, -250+ty,
 -130+tx, -150+ty,
 130+tx, -150+ty);
}

void draw()
{
 background(255);
 drawHouse(0.5*width, 0.75*height);
}

“world coordinates”, which will require a lot more
typing and be highly error-prone.

• Computing rotations is difficult—it’s all sines and
cosines, and we certainly want to avoid peppering
our code with those.

• Rotated objects are much harder to describe. A
rotated rectangle is still a polygon. But what’s a
rotated ellipse?

d
Geometric context

The solution, which is a classic idea from computer
graphics, is to introduce geometric context. For our
purposes, a geometric context will consist of the
sequence of transformations that we plan to apply to
every object that we’re drawing.

The first smart thing we do is to make the current
geometric context a global variable. It’s not a variable
you define or see, it’s hiding somewhere within
Processing. And it’s not really something you need to
think about explicitly. The context is part of the
program’s overall state. The second smart idea ties in
with the first one: every drawing function, like
ellipse(), rect(), line(), vertex(), and so on, knows
about the current context and uses it to transform
objects before they’re drawn on the screen.

This setup neatly separates transformation and
geometry. You can set up a current transformation by
altering the geometric context, and then draw objects
without having to track things like translation
manually. The trick is that you have a greater
responsibility as a programmer to have a mental
model of what the context is and how it changes.

Enough philosophizing. There are three main
transformation functions that alter geometric context:
translate(), rotate(), and scale(). The translate()
function takes two arguments, which act like tx and ty
in the examples above. The meaning of the function is
something like “Hey Processing, everything you draw
from now own should be offset by these amounts”.

It turns out that geometric
context can be represented
very compactly and elegantly
using a matrix (a 2D array of
numbers). You may have
encountered matrices if you
ever took a linear algebra
course. But you definitely don’t
need to know about them for
this course.

With that in mind, we can rewrite the translated house
example as follows:

Ah, that’s much nicer. Notice how the drawHouse()
function doesn’t need to be aware of any
transformations that might be applied to the drawing.
The drawing can be created in whatever “local
coordinates” are most convenient for drawing houses,
and we trust whoever’s asking for a house to establish
the appropriate geometric context before drawing.
The information on geometric context is passed
between these two pieces of code indirectly, through
a global variable that we don’t see. (So we get a lot of
convenience in exchange for a little bit of mystery.)

Note that every time draw() is called, the geometric
context is re-initialized. So if you have some context
you always want to work in, you should establish it
from scratch at the start of draw().

void setup()
{
 size(500, 500);
}

void drawHouse()
{
 fill(#BFB375);
 rect(-100, -150, 200, 150);

 fill(#3E362F);
 triangle(
 0, -250, -130, -150, 130, -150);
}

void draw()
{
 background(255);
 translate(0.5*width, 0.75*height);
 drawHouse();
}

d
Pushing and popping

It’s very important to realize that the effects of these
transformation functions are permanent, at least until
the end of the frame. For example, let’s say we wanted
to draw a row of circles using only the translate()
function. It might look right to try this:

That probably doesn’t do what you want. The first
circle will have the correct translation of (50,50). But
the second will combine the new translation of
(150,50) with the existing translation, yielding
(200,100). The third circle will be even more off. The
call to translate() doesn’t just affect the next ellipse
to be drawn, it changes the underlying geometric
context.

Now, there is a quick fix that will get around this. The
idea is to recognize explicitly that transformations
accumulate and adjust these translations accordingly:

void setup()
{
 size(600, 100);

 for(int idx = 0; idx < 6; ++idx) {
 translate(50 + 100*idx, 50);
 ellipse(0, 0, 100, 100);
 }
}

That’s pretty clever, but it’s potentially confusing
because every ellipse depends on a whole sequence
of accumulated transformations. It’s better to have a
way to set the graphics context separately for each
ellipse, and “revert” to the previous context
afterwards. Processing lets us do that with the
functions pushMatrix() and popMatrix(). The function
pushMatrix() can be thought of as “set aside the
current geometric context, and make a new copy that
I can play with”. Then, when you’re done using this
pushed context, you can throw it away with
popMatrix(), and return to whichever context was in
place before. Even better, note that you can push as
many times as you want, temporarily setting up layers
of sub-contexts that will be discarded later. With that
in mind, here’s a less confusing version of the row-of-
ellipses code:

In fact, this example embodies a pretty standard
model for using geometric context. To draw some

void setup()
{
 size(600, 100);
 translate(50, 50);

 for(int idx = 0; idx < 6; ++idx) {
 ellipse(0, 0, 100, 100);
 translate(100, 0);
 }
}

void setup()
{
 size(600, 100);

 for(int idx = 0; idx < 6; ++idx) {
 pushMatrix();
 translate(50 + 100*idx, 50);
 ellipse(0, 0, 100, 100);
 popMatrix();
 }
}

The names pushMatrix() and
popMatrix() are derived from
the fact that the context is
represented internally by a
stack of matrices. You don’t
need to know that, but it might
help explain these mysterious
names.

objects in context, we typically write code of this
form:

d
Combining transformations

So far, the examples we’ve seen have relied almost
exclusively on translation. I did that deliberately: it’s
fairly easy to see how multiple translations might
combine. Things get more challenging (but also more
powerful!) when we start to combine different kinds of
transformations together.

One thing that makes scale() and rotate() more
complex is that they operate relative to a point. When
you rotate the world, there’s a point you’re rotating
around; when you scale, you’re scaling inward towards
a point (or outward from it). You might have
experienced this in practice in tools like Adobe
Illustrator, where the rotation and scaling tools let you
specify that point manually. It will help to keep these
descriptions in mind:

• rotate(theta): from now on, draw everything in a
context that has been rotated by an angle theta
around the point (0,0). The angle is given in radians.

• scale(sx, sy): from now on, draw everything in a
context that has been scaled by a factor of sx in the
x direction and sy in the y direction relative to the
point (0,0). That is, every point (x,y) will be
transformed to (sx*x, sy*y). (Note that scale(s) is
equivalent to scale(s, s).)

pushMatrix();
// A sequence of translate(), rotate(),
// and scale() calls.
applySomeTransformations();
// Anything that draws objects
drawSomeStuff();
popMatrix();

The other problem is that order matters. If we have a
sequence of transformations we’d like to apply to an
object, we have to choose the right order in which to
apply them.

As an example, let’s try to draw a rotated ellipse in the
centre of a sketch. We’ll assume that actual call to
ellipse() will use (0,0) as the centre of the ellipse, so
that we’re forced to handle translation and rotation
using geometric context.

It’s pretty clear that we’ll need some combination of a
translation and rotation to get the ellipse to the right
location and orientation. But which transformations,
and in what order? (Exercise: work this out!)

As a further complication, suppose that the only
permitted drawing operation is to create a circle of
diameter 100. Can we still draw a 200 x 100 ellipse?
Yes, if we use the correct scale() operation. But note
that this “non-uniform scaling” operation doesn’t
necessarily do what you want, particularly when it
comes to stroke widths. Unfortunately, there isn’t
really a way to avoid that. It’s generally better to build
any non-uniform scaling into the shape itself (e.g., by
changing the size arguments passed to ellipse())
than to use scale() with different absolute scaling
values in x and y. (Note that scale(-1,1) and
scale(1,-1) are both useful—they flip the world across
a vertical and horizontal axis, respectively, without
non-uniform stretching.)

In general, if we assume that we’ve got an object
that’s drawn in “local coordinates” (say, centred on
(0,0)) and we want to scale, rotate, and translate it
into place in a sketch, we prefer this order of
operations:

void setup()
{
 size(150, 150);
 // Do some transformations here.
 // But which ones?
 ellipse(0, 0, 100, 50);
}

One or more of these function calls can of course be
omitted if they’re not needed.

As a quick example, we can finally correct the
discrepancy between Processing’s coordinate system
(origin in the top level of the sketch, axes point right
and down), and a coordinate system that we might
find more familiar from mathematics (origin at the
centre of the sketch, axes point right and up):

This transformation will work fine if we’re drawing
everything in the window ourselves. However, there
are a few things we can draw for which Processing
does a lot of work internally: text, images (PImage), and
illustrations (PShape). Processing draws these with the
understanding that y points down. If we manually
change that, things like images will be drawn upside-
down. We’d need to apply further corrections to
(un-)reflect these objects.

Let’s look at one further example. Suppose we want to
create a sketch in which an image is drawn in the
centre of the window and it rotates around its own
centre. We start with simple code to draw an image in
the centre of the window.

pushMatrix();
translate(tx, ty);
rotate(angle);
scale(s);
drawTheObject();
popMatrix();

void draw()
{
 translate(width/2, height/2);
 scale(1, -1);

 // Do everything else in the
 // sketch here.
}

When we run this sketch we discover that it doesn’t
do what we want. The problem, of course, is that an
image is drawn relative to its top-left corner, not its
centre. To centre the image on the screen, we’d need
to offset the translation by half the size of the image.
Let me also prepare some code that will allow us to
do rotation.

So far, so good—the image will be in the correct
location. It seems natural simply to find the right spot

PImage img;

void setup()
{
 size(400, 400);
 img = loadImage("titania150.jpg");
}

void draw()
{
 background(255);
 translate(width/2, height/2);
 image(img, 0, 0);
}

PImage img;
float angle;

void setup()
{
 size(400, 400);
 img = loadImage("titania150.jpg");
 angle = 0.0;
}

void draw()
{
 background(255);
 translate(width/2, height/2);
 translate(width/2 - img.width/2,
 height/2 - img.height/2);
 image(img, 0, 0);
 angle += 0.01;
}

We could also have used the
built-in function imageMode() to
recentre images.

to stick in rotate(angle). But where? It turns out that
no matter where you try to rotate, it won’t work. You’ll
be able to rotate around the corner of the image, or
the corner of the sketch, but not the centre of the
image.

The solution is one step more complicated. We must
break the transformation sequence down into three
steps. First, we move the image so that its centre lies
at (0,0). Now the image is in a spot where we can
rotate it around its own centre. Finally, we can move
the image so it lies at the centre of the sketch window.
Putting these three steps together (and remembering
that we need to write them in reverse order to how we
want them applied!), we end up with this code:

PImage img;
float angle;

void setup()
{
 size(400, 400);
 img = loadImage("titania150.jpg");
 angle = 0.0;
}

void draw()
{
 background(255);
 translate(width/2, height/2);
 rotate(angle);
 translate(
 -img.width/2, -img.height/2);
 image(img, 0, 0);
 angle += 0.01;
}

Example sketch: RotateImage

d
Hierarchical transformations and hierarchical
modeling

Let’s say we want to draw a more complicated house
than the one that opened this module. We’ll start
small, by designing a humble doorknob:

Next, the plan is draw a complete door, with two inset
panels:

We can start out in the usual way:

void doorknob()
{
 fill(140);
 ellipse(0, 0, 100, 100);
 fill(80);
 ellipse(0, 0, 50, 50);
}

5025

50

10
0

We still need to add the doorknob to the code above.
We could copy and paste the doorknob code into the
door() function, and modify all coordinates and sizes
so it’s compatible. But we’ve already written a
doorknob() function. And we can exploit geometric
context to re-use it inside of door():

This approach is elegant and principled. We prepare
and push a sub-context that embeds the doorknob in
the world (i.e., the coordinate system) of the door.
Then we can go ahead and drop in a call to doorknob()
and it gets transformed into the right location. Better
yet, we can go back later and rewrite the doorknob
code, and every door will automatically be upgraded.
This is a bit like using Symbols in Adobe Illustrator
(have you seen those?)—a symbol behaves like a
helper function in Processing. When you drop a
symbol into a new document, it’s like pushing a sub-

void door()
{
 fill(#553A03);
 rect(-25, -50, 50, 100);
 fill(#714D05);
 rect(-20, -45, 40, 40);
 rect(-20, 5, 40, 40);
 // Now draw the doorknob.
}

void door()
{
 fill(#553A03);
 rect(-25, -50, 50, 100);
 fill(#714D05);
 rect(-20, -45, 40, 40);
 rect(-20, 5, 40, 40);

 pushMatrix();
 translate(20, 0);
 scale(0.1);
 doorknob();
 popMatrix();
}

context, calling a function, and then popping the
context.

Of course, we can continue this embedding process
indefinitely. A house might have two doors side-by-
side, not to mention some windows. A street could be
drawn as a sequence of houses, and so on. This
powerful approach to creating objects is usually called
hierarchical modelling: an object might contain some
explicit drawing commands, but also some uses of
transformed sub-objects. The power of hierarchical
modelling is that each object can be drawn without
thinking about how it might play a role in a larger
drawing. The place where you use that sub-drawing is
where you decide how to transform it into position.

Example sketch: HierarchicalStreet

