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Module 07 

Recursion and fractals 
Topics 

• Recursion as an extension of hierarchical modelling 
• Simple fractals 

Readings 

• Learning Processing, Section 13.11 
• Nature of Code, Chapter 8 

d 
Introduction 

One place where programming becomes a powerful 
tool for visual expression is in the creation of content 
that would be too difficult to draw by hand. You saw a 
bit of generative design in CS 105 as an example of 
this sort of phenomenon, and hopefully a few of the 
examples in CS 106 have demonstrated the utility of 
programming. In this module we’ll look at recursion as 
a programming technique and its application in 
creating designs like fractals. 

d 
Recursion 

Recursion is an incredibly powerful tool across much 
of mathematics and computer science, at both the 
conceptual and practical levels. All too often, it also 
proves to be a stumbling block for people new to 
programming. We won’t spend a long time studying 
recursion in this course (unlike in CS 115 and CS 135, 
where recursion is everywhere). My main goal is to 

The ultimate trip into the 
twisted world of recursion is 
the legendary mind-bending 
book Gödel, Escher, Bach: an 
Eternal Golden Braid by 
Douglas Hofstadter.



communicate some intuition for what recursion is and 
why it’s so useful, particularly in the kinds of visual 
programming tasks we pursue. Of course, you will also 
practice writing recursive code in the lab and on the 
assignment. 

Let’s begin at an intuitive level, by using an online 
drawing program called Recursive Drawing 
(recursivedrawing.com). This is a bare-bones tool 
lacking in many basic features, but there’s one special 
thing that it does very well, as we’ll see. 

It doesn’t take much experimentation to realize that 
there’s an immediate connection between this simple 
drawing interface and the kind of hierarchical 
modelling we explored in the previous module. We 
can treat each of the shapes in the “library” (the left 
sidebar) as a kind of “function” in a hypothetical 
programming language. When you drag shape A from 
the library into a some new design B, you are 
effectively setting up a geometric context and calling 
the A function as part of writing a B function. For 
example, the composition above contains three cars, 
each of which relies on a previously defined “car” 
function. If we modify the underlying car, all three 
instances are immediately affected. 

So far, that’s just a demonstration of hierarchical 
modelling as in Module 05. But this piece of software 

http://recursivedrawing.com


has a remarkable superpower: you can drag a shape 
out of the library onto itself! What does that even 
mean? Well, try it: create a new shape and drag a 
circle or square onto it. Now drag another copy of the 
shape you’re creating onto the main canvas. Try 
adjusting the position, scale and rotation of the main 
shape and of any copies that also appear on the 
canvas (it’s safer to scale down, not up). Now step 
back from the computer and mediate on what you’ve 
seen. Can you tell yourself a convincing story that 
accounts for this behaviour? This tool demonstrates 
the essence of recursion. 

If you’re comfortable with the idea of recursion as 
embodied here, the next step is to ask how the same 
ideas might find their way into code. If each shape in 
the Recursive Drawing library is equivalent to a 
function, then a shape that incorporates a copy of 
itself ought to correspond to a function that calls 
itself. And that’s exactly what we usually mean when 
we speak of programming a recursive function: 

(More generally, a recursive function might be part of 
a longer chain, e.g., A() calls B() and B() calls A(), or 
A() calls B() which calls C() which calls A(), etc. But 
we’ll avoid these more convoluted forms of recursion 
in this course.) 

That seems simple enough to express in code. Let’s 
try something like this as part of a longer Processing 
sketch. 

void makeDrawing() 
{ 
  ellipse( 0, 0, 150, 150 ); 

  pushMatrix(); 
  translate( 130, -20 ); 
  scale( 0.6 ); 
  makeDrawing(); 
  popMatrix(); 
}

A recursive function is a function that calls itself.



This function certainly seems to have the right 
structure, but unfortunately it’s fatally flawed. The 
problem is that there’s nothing to tell the function 
when to stop. Processing will attempt to compose a 
drawing from an infinite sequence of ever smaller 
drawings, and this infinite regress will eventually 
consume all of some resource in the computer, 
crashing the sketch. 

We avoid infinite regress with some sort of stopping 
condition, usually called a base case. Every recursive 
function must have a base case, a way to execute the 
body of the function without ever making a recursive 
call. For the makeDrawing() function above, the easiest 
way to add a base case is to keep track of the level of 
the recursion: how deep are we in a nested sequence 
of recursive calls? Typically, we count down:  

• The first time we call the recursive function we pass 
in the total number of levels we want to use. 

• Every time we make a recursive call, we pass in the 
next smaller number of levels. 

• The function checks if the current level is zero, and if 
so it does something trivial. 

We might then arrive at code like this: 

Note that levs can’t be a global variable, it must be an 
argument to the function. Every call to the function 
now operates “at level n” for some n; a level-n drawing 
is made out of an ellipse, combined with a level-(n-1) 

In practice, this program will 
crash very quickly because 
Processing permits a relatively 
small number (32) of nested 
calls to pushMatrix().

void makeDrawing( int levs ) 
{ 
  ellipse( 0, 0, 150, 150 ); 

  if( levs > 0 ) { 
    pushMatrix(); 
    translate( 130, -20 ); 
    scale( 0.6 ); 
    makeDrawing( levs - 1 ); 
    popMatrix(); 
  } 
}



drawing. Think of it as a collapsed (and more 
abstract) form of this much more verbose code: 

void makeDrawing_0() 
{ 
  ellipse( 0, 0, 150, 150 ); 
} 

void makeDrawing_1() 
{ 
  ellipse( 0, 0, 150, 150 ); 
  pushMatrix(); 
  translate( 130, -20 ); 
  scale( 0.6 ); 
  makeDrawing_0(); 
  popMatrix(); 
} 

void makeDrawing_2() 
{ 
  ellipse( 0, 0, 150, 150 ); 
  pushMatrix(); 
  translate( 130, -20 ); 
  scale( 0.6 ); 
  makeDrawing_1(); 
  popMatrix(); 
} 

void makeDrawing_3() 
{ 
  ellipse( 0, 0, 150, 150 ); 
  pushMatrix(); 
  translate( 130, -20 ); 
  scale( 0.6 ); 
  makeDrawing_2(); 
  popMatrix(); 
} 

void makeDrawing_4() 
{ 
  ellipse( 0, 0, 150, 150 ); 
  pushMatrix(); 
  translate( 130, -20 ); 
  scale( 0.6 ); 
  makeDrawing_3(); 
  popMatrix(); 
} 

// ...and so on...



The idea that the level goes down by one in every 
recursive call represents an important principle: the 
recursive call must get a little bit closer to the base 
case (because if it doesn’t, the program will never 
finish). Always make sure your recursive calls are 
“making progress”. Another way to structure this 
program would be to keep track of how large the 
circles will be on the screen, and stop the recursion 
when they get too small. 

Putting together what we’ve learned, we arrive at 
these general guidelines for writing recursive 
functions: 

Computer scientists love to write code that draws 
self-similar structures like these fractals. Some simple 
examples are the Sierpinski Carpet, Sierpinski Triangle, 
and the Koch Curve. (Images below from Wikipedia.) 

In a recursive function… 

• The function body will contain at least one call 
to the function itself. 

• The recursive calls will be to “simpler” 
instances of the problem. 

• There will be a base case in which no further 
recursion happens.



There are numerous other examples of abstract 
mathematical designs like these. They can sometimes 
be seen intruding into popular culture, though they 
tend to remain within the province of admirers of 
overt mathematical form. They might occasionally 
provide an interesting basis for more freeform design, 
though. 


