
CS 106 Winter 2016
Craig S. Kaplan

Module 07

Recursion and fractals
Topics

• Recursion as an extension of hierarchical modelling
• Simple fractals

Readings

• Learning Processing, Section 13.11
• Nature of Code, Chapter 8

d
Introduction

One place where programming becomes a powerful
tool for visual expression is in the creation of content
that would be too difficult to draw by hand. You saw a
bit of generative design in CS 105 as an example of
this sort of phenomenon, and hopefully a few of the
examples in CS 106 have demonstrated the utility of
programming. In this module we’ll look at recursion as
a programming technique and its application in
creating designs like fractals.

d
Recursion

Recursion is an incredibly powerful tool across much
of mathematics and computer science, at both the
conceptual and practical levels. All too often, it also
proves to be a stumbling block for people new to
programming. We won’t spend a long time studying
recursion in this course (unlike in CS 115 and CS 135,
where recursion is everywhere). My main goal is to

The ultimate trip into the
twisted world of recursion is
the legendary mind-bending
book Gödel, Escher, Bach: an
Eternal Golden Braid by
Douglas Hofstadter.

communicate some intuition for what recursion is and
why it’s so useful, particularly in the kinds of visual
programming tasks we pursue. Of course, you will also
practice writing recursive code in the lab and on the
assignment.

Let’s begin at an intuitive level, by using an online
drawing program called Recursive Drawing
(recursivedrawing.com). This is a bare-bones tool
lacking in many basic features, but there’s one special
thing that it does very well, as we’ll see.

It doesn’t take much experimentation to realize that
there’s an immediate connection between this simple
drawing interface and the kind of hierarchical
modelling we explored in the previous module. We
can treat each of the shapes in the “library” (the left
sidebar) as a kind of “function” in a hypothetical
programming language. When you drag shape A from
the library into a some new design B, you are
effectively setting up a geometric context and calling
the A function as part of writing a B function. For
example, the composition above contains three cars,
each of which relies on a previously defined “car”
function. If we modify the underlying car, all three
instances are immediately affected.

So far, that’s just a demonstration of hierarchical
modelling as in Module 05. But this piece of software

http://recursivedrawing.com

has a remarkable superpower: you can drag a shape
out of the library onto itself! What does that even
mean? Well, try it: create a new shape and drag a
circle or square onto it. Now drag another copy of the
shape you’re creating onto the main canvas. Try
adjusting the position, scale and rotation of the main
shape and of any copies that also appear on the
canvas (it’s safer to scale down, not up). Now step
back from the computer and mediate on what you’ve
seen. Can you tell yourself a convincing story that
accounts for this behaviour? This tool demonstrates
the essence of recursion.

If you’re comfortable with the idea of recursion as
embodied here, the next step is to ask how the same
ideas might find their way into code. If each shape in
the Recursive Drawing library is equivalent to a
function, then a shape that incorporates a copy of
itself ought to correspond to a function that calls
itself. And that’s exactly what we usually mean when
we speak of programming a recursive function:

(More generally, a recursive function might be part of
a longer chain, e.g., A() calls B() and B() calls A(), or
A() calls B() which calls C() which calls A(), etc. But
we’ll avoid these more convoluted forms of recursion
in this course.)

That seems simple enough to express in code. Let’s
try something like this as part of a longer Processing
sketch.

void makeDrawing()
{
 ellipse(0, 0, 150, 150);

 pushMatrix();
 translate(130, -20);
 scale(0.6);
 makeDrawing();
 popMatrix();
}

A recursive function is a function that calls itself.

This function certainly seems to have the right
structure, but unfortunately it’s fatally flawed. The
problem is that there’s nothing to tell the function
when to stop. Processing will attempt to compose a
drawing from an infinite sequence of ever smaller
drawings, and this infinite regress will eventually
consume all of some resource in the computer,
crashing the sketch.

We avoid infinite regress with some sort of stopping
condition, usually called a base case. Every recursive
function must have a base case, a way to execute the
body of the function without ever making a recursive
call. For the makeDrawing() function above, the easiest
way to add a base case is to keep track of the level of
the recursion: how deep are we in a nested sequence
of recursive calls? Typically, we count down:

• The first time we call the recursive function we pass
in the total number of levels we want to use.

• Every time we make a recursive call, we pass in the
next smaller number of levels.

• The function checks if the current level is zero, and if
so it does something trivial.

We might then arrive at code like this:

Note that levs can’t be a global variable, it must be an
argument to the function. Every call to the function
now operates “at level n” for some n; a level-n drawing
is made out of an ellipse, combined with a level-(n-1)

In practice, this program will
crash very quickly because
Processing permits a relatively
small number (32) of nested
calls to pushMatrix().

void makeDrawing(int levs)
{
 ellipse(0, 0, 150, 150);

 if(levs > 0) {
 pushMatrix();
 translate(130, -20);
 scale(0.6);
 makeDrawing(levs - 1);
 popMatrix();
 }
}

drawing. Think of it as a collapsed (and more
abstract) form of this much more verbose code:

void makeDrawing_0()
{
 ellipse(0, 0, 150, 150);
}

void makeDrawing_1()
{
 ellipse(0, 0, 150, 150);
 pushMatrix();
 translate(130, -20);
 scale(0.6);
 makeDrawing_0();
 popMatrix();
}

void makeDrawing_2()
{
 ellipse(0, 0, 150, 150);
 pushMatrix();
 translate(130, -20);
 scale(0.6);
 makeDrawing_1();
 popMatrix();
}

void makeDrawing_3()
{
 ellipse(0, 0, 150, 150);
 pushMatrix();
 translate(130, -20);
 scale(0.6);
 makeDrawing_2();
 popMatrix();
}

void makeDrawing_4()
{
 ellipse(0, 0, 150, 150);
 pushMatrix();
 translate(130, -20);
 scale(0.6);
 makeDrawing_3();
 popMatrix();
}

// ...and so on...

The idea that the level goes down by one in every
recursive call represents an important principle: the
recursive call must get a little bit closer to the base
case (because if it doesn’t, the program will never
finish). Always make sure your recursive calls are
“making progress”. Another way to structure this
program would be to keep track of how large the
circles will be on the screen, and stop the recursion
when they get too small.

Putting together what we’ve learned, we arrive at
these general guidelines for writing recursive
functions:

Computer scientists love to write code that draws
self-similar structures like these fractals. Some simple
examples are the Sierpinski Carpet, Sierpinski Triangle,
and the Koch Curve. (Images below from Wikipedia.)

In a recursive function…

• The function body will contain at least one call
to the function itself.

• The recursive calls will be to “simpler”
instances of the problem.

• There will be a base case in which no further
recursion happens.

There are numerous other examples of abstract
mathematical designs like these. They can sometimes
be seen intruding into popular culture, though they
tend to remain within the province of admirers of
overt mathematical form. They might occasionally
provide an interesting basis for more freeform design,
though.

