
CS 106 Winter 2016
Craig S. Kaplan

Module 08

Randomness and noise
Topics

• The use of randomness as a design tool, controlling
randomness in code

• Emergent design from simple rules

Readings

• Learning Processing, Sections 13.3–13.6

d
Introduction

Artists have long relied on sources of randomness as
part of the design process. In music, Mozart has his
musical dice and John Cage placed notes based on
the imperfections he saw on an empty page. Of
course, randomness also plays a large role in visual
art, with Jackson Pollock as just one prime example.

Throughout this course, we’ve used the built-in
function random() in an informal way to get live
behaviour that we didn’t explicitly design in detail,
tying ourselves in to this long tradition. In order to
maximize our ability to get interesting results in the
presence of randomness, we need to obtain greater
control over the way that we generate and use
random numbers. We’ll talk not just about the random()
function, but also about randomSeed() and noise().

d
Random numbers aren’t

https://en.wikipedia.org/wiki/Musikalisches_W%C3%BCrfelspiel
https://en.wikipedia.org/wiki/Music_for_Piano_(Cage)

Mathematicians argue strenuously over what makes a
number “random”—it turns out to be a deep question.
We won’t spend time on that, but it’s important to
understand that the “random” numbers that
Processing gives you are not truly random. In fact,
they’re completely predetermined! Once you discover
this fact, it becomes possible to control the way
random numbers are generated in a useful way.

Truly random numbers are hard to make—you need
something that behaves in an unpredictable way
according to the laws of physics, like a lump of
radioactive material. In lieu of that, we use simple
mathematical formulas that give the illusion of
randomness. They produce numbers in a pattern, but
the pattern is too hard for us to discern. Such
functions are called pseudo-random number
generators. An example might look like this:

You don’t need to understand the choice of numbers
above, or even the mathematical formula in the body
of the function. The important observations are:

• Each time you call the function myRandom() it will
give you back some unpredictable positive integer
(between 0 and around 130). The number is
different each time because it depends on the
variable seed, which is overwritten after every call.

• There’s no actual randomness in this function. For
example, every time I restart my sketch and print
out the first ten values I get from myRandom(), I see
the same ten numbers.

int a = 8121;
int c = 28411;
int m = 134456;
int seed = 0;

int myRandom()
{
 seed = (a*seed + c) % m;
 return seed / 1024;
}

It turns out that this is very close to the way the built-
in function random() really works. It’s a completely
deterministic mathematical formula, one that will
ultimately produce numbers in a fixed (but hard to
predict) pattern.

But wait, you cry, this isn’t the way that Processing
works! Consider a simple sketch:

Running this sketch multiple times will produce
different outputs! In that case, where’s the pattern?

Well, the pattern you get is determined by a value
called a seed. In the sketch above, if I manually
change the value of the seed variable I’ll jump into the
random numbers at a different point in the pattern,
but the pattern itself will be the same thereafter.

We have the same power in Processing, via the built-in
function randomSeed(). That function takes any integer
as input, and initializes the pseudo-random number
generator using that integer. The actual number you
pass in is basically irrelevant, except:

• Different seeds will drop you in at different points
in the pattern

• If you reset Processing with the same seed, you’ll
get the same pattern of random numbers
afterwards

With that in mind, Processing does something useful
for you—when your sketch starts, it sets the random
seed to a value based on the current time, making the
numbers seem “more random”. But you can override
that default behaviour at any time by using
randomSeed().

Pseudo-random numbers are perfectly fine as a
source of chaos for art and design purposes, but it’s
very dangerous to assume blindly that they’re truly
random. Cryptographic systems based on
pseudorandom numbers are easier to hack. Gambling
machines that use pseudorandom numbers without

println(random(1));

care can be beaten. When real randomness matters,
there are better sources and better algorithms,
though it’s always a hard problem.

d
Slashes and backslashes

Let’s start to look at using randomness in context,
with the following amazingly simple (non-Processing)
program:

This program loops forever, randomly printing forward
and backward slashes. The result looks a bit like a
random maze, though it isn’t truly a maze (there are
loops and closed-off passages). It may seem
innocuous, but this program is the subject of an entire
book on computer art, written by a group that
includes Casey Reas, one of the creators of
Processing.

It isn’t too hard to translate this into a Processing
sketch, though it’s better to use more than one line of
code.

10 PRINT CHR$(205.5+RND(1)); : GOTO 10 Don’t bother trying to run this
program, unless you’re using
the BASIC programming
language on a Commodore 64.

http://www.blackjackforumonline.com/content/how_to_beat_keno.htm
http://10print.org/

Notice that we get a different design every time we
run the sketch. That’s good: it means that our random
numbers keep changing, like we would hope.

But that lack of repetition can also be a liability. What
if we want to redraw the frame in the same (or almost
the same) way? If we do so naively, we get different
random decisions, and the pattern changes
chaotically.

void setup()
{
 size(600, 400);
 strokeCap(ROUND);
 strokeWeight(7);
 stroke(0);
 noFill();

 background(255);

 for(int y = 0; y < height; y += 20) {
 for(int x = 0; x < width; x += 20) {
 if(random(1) <= 0.5) {
 line(x, y, x + 20, y + 20);
 } else {
 line(x + 20, y, x, y + 20);
 }
 }
 }
}

One way to resolve this chaos is to make all the
random numbers you need once up front, and set
them aside. For example, we might create a 2D array
of random numbers, and always refer back to them
when drawing the slashes and backslashes. (Exercise:
do it!) But there’s a much more elegant approach: just
use the built-in function randomSeed() at the start of
each frame to re-initialize the random number
generator to produce the same sequence of “coin
flips”.

Note the use of the constant 0.5 in the code above.
When we say random(1), we get an unpredictable
floating-point number that’s at least 0 and less than 1.
What would happen if we chose a number less than
0.5? If we chose one higher? What if we made the
number change over space or time?

Example sketch: TenPrint

void setup()
{
 size(600, 400);
 strokeCap(ROUND);
 strokeWeight(7);
 stroke(0);
 noFill();
}

void draw()
{
 background(255);

 for(int y = 0; y < height; y += 20) {
 for(int x = 0; x < width; x += 20) {
 if(random(1) <= 0.5) {
 line(x, y, x + 20, y + 20);
 } else {
 line(x + 20, y, x, y + 20);
 }
 }
 }
}

So far this sketch works fine, but what if we want to
scroll the random maze? We can restart the sequence
of random numbers, but we can’t translate it or
otherwise extend it to cover new grid cells as they
enter the screen. What we really need is some way to
conceptually “attach” random numbers to every point
in an ambient field in space. That would let us develop
a theoretically infinite grid of slashes and backslashes,
and simply show a small fragment of it in every frame.

That’s one possible use of the built-in noise() function.
This function can be passed one, two, or three
floating-point numbers as parameters. In one
dimension, the noise function produces an
unpredictable number for every input. But that
number never changes—it’s permanently associated
with the input number. This behaviour is very different
from random()! The numbers passed in to noise() are
like coordinates, as if you’re looking up a number in a
map. Every time you look up the same coordinates,
you get the same answer. But multiple calls to random()
will produce a sequence of distinct values.

By default, the noise() function has interesting
statistical properties. At very fine scales (i.e., when
you zoom in on it), it changes slowly and looks very
smooth. As you zoom out is gets more chaotic, but at
some point the function runs out of randomness and
starts repeating. Still, there’s a wide range in which
you can use this function productively.

float m = 0.01; // We’ll vary this

void setup()
{
 size(600, 200);
 noFill();
 background(255);
 beginShape();
 for(int idx = 0; idx < width; ++idx) {
 vertex(idx, noise(idx*m)*200);
 }
 endShape();
}

For the random 10 PRINT sketches, we can use the
two-parameter version of the noise() function to
assign random orientations to every line in the plane,
whether or not we actually draw it. Then, we can even
add direct manipulation and use the mouse to explore
a conceptually infinite random pattern.

d

m = 0.01

m = 0.1

m = 1

m = 50000

Example sketch: TenPrintNoise

Example sketch: TenPrintManip

Example sketch: Truchet

Example sketch: QBert

Combining fractals and randomness

Let’s explore two examples that combine fractals and
randomness.

Diminishing circles

It’s easy to write a Processing sketch that places a set
of circles completely at random. Things get more
interesting when ask that the circles not intersect. We
need to maintain explicit arrays for the centres and
radii of the circles, and use code to check whether a
new circle intersects any existing one before drawing
it.

We also gradually diminish the radius of the circles
we’re trying to add. Circles never fill up the plane
completely, so as the radius goes down we always
eventually find places to fit new circles.

This sketch suggests a general framework for creating
fractal-like structures. We place objects wherever they
fit. If nothing fits, make the objects smaller. Repeat for
as long as desired. This technique is explored in a
paper by Dunham and Shier, and in some 2D and 3D
examples by Paul Bourke. On the more mathematical
side, fractals like the Apollonian Gasket are a kind
idealized version of this circle fractal.

Mountains

A standard technique for generating fractal mountain
ranges is called midpoint displacement. Given some
lines that make up a mountain range, we divide each
line in half and randomly move the midpoint up or
down. The amount of displacement in Y is
proportional to the distance between the line’s
endpoints in X, so that we add finer details as we work
at smaller scales. It’s easiest to use recursion to
generate a 2D fractal mountain range.
In addition to the number of levels remaining in the
recursion, each recursive call takes four float
parameters that describe the current line segment to

Example sketch: DiminishingCircles

http://archive.bridgesmathart.org/2014/bridges2014-79.pdf
http://www.paulbourke.net/texture_colour/randomtile/
http://en.wikipedia.org/wiki/Apollonian_gasket

“mountainify”. The base case simply draws the line
segment. The recursive case computes the midpoint
of the line segment (i.e., the averages of the X and Y
coordinates). It generates a random displacement and
moves the Y coordinate of the midpoint up or down
by that distance, scaled by the width of the segment
(the difference between the X values of its endpoints)
and a global scaling factor. Then it recursively draws
two sub-mountains, one based on the left sub-
segment and one on the right sub-segment. These
could be drawn using lots of calls to line(), though a
more elegant approach is to use beginShape(),
endShape(), and vertex().

This same technique adapts naturally to 3D, though
the recursion is more complicated because we have to
express the connectivity between every mountain
point and its neighbours in a 2D grid.

Example sketch: Mountains

