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Module 08 

Randomness and noise 
Topics 

• The use of randomness as a design tool, controlling 
randomness in code 

• Emergent design from simple rules 

Readings 

• Learning Processing, Sections 13.3–13.6 

d 
Introduction 

Artists have long relied on sources of randomness as 
part of the design process. In music, Mozart has his 
musical dice and John Cage placed notes based on 
the imperfections he saw on an empty page. Of 
course, randomness also plays a large role in visual 
art, with Jackson Pollock as just one prime example. 

Throughout this course, we’ve used the built-in 
function random() in an informal way to get live 
behaviour that we didn’t explicitly design in detail, 
tying ourselves in to this long tradition. In order to 
maximize our ability to get interesting results in the 
presence of randomness, we need to obtain greater 
control over the way that we generate and use 
random numbers. We’ll talk not just about the random() 
function, but also about randomSeed() and noise(). 

d 
Random numbers aren’t 

https://en.wikipedia.org/wiki/Musikalisches_W%C3%BCrfelspiel
https://en.wikipedia.org/wiki/Music_for_Piano_(Cage)


Mathematicians argue strenuously over what makes a 
number “random”—it turns out to be a deep question. 
We won’t spend time on that, but it’s important to 
understand that the “random” numbers that 
Processing gives you are not truly random. In fact, 
they’re completely predetermined! Once you discover 
this fact, it becomes possible to control the way 
random numbers are generated in a useful way. 

Truly random numbers are hard to make—you need 
something that behaves in an unpredictable way 
according to the laws of physics, like a lump of 
radioactive material. In lieu of that, we use simple 
mathematical formulas that give the illusion of 
randomness. They produce numbers in a pattern, but 
the pattern is too hard for us to discern. Such 
functions are called pseudo-random number 
generators. An example might look like this: 

You don’t need to understand the choice of numbers 
above, or even the mathematical formula in the body 
of the function. The important observations are: 

• Each time you call the function myRandom() it will 
give you back some unpredictable positive integer 
(between 0 and around 130). The number is 
different each time because it depends on the 
variable seed, which is overwritten after every call. 

• There’s no actual randomness in this function. For 
example, every time I restart my sketch and print 
out the first ten values I get from myRandom(), I see 
the same ten numbers. 

int a = 8121; 
int c = 28411; 
int m = 134456; 
int seed = 0; 

int myRandom() 
{ 
  seed = (a*seed + c) % m; 
  return seed / 1024; 
}



It turns out that this is very close to the way the built-
in function random() really works. It’s a completely 
deterministic mathematical formula, one that will 
ultimately produce numbers in a fixed (but hard to 
predict) pattern. 

But wait, you cry, this isn’t the way that Processing 
works! Consider a simple sketch: 

Running this sketch multiple times will produce 
different outputs! In that case, where’s the pattern? 

Well, the pattern you get is determined by a value 
called a seed. In the sketch above, if I manually 
change the value of the seed variable I’ll jump into the 
random numbers at a different point in the pattern, 
but the pattern itself will be the same thereafter. 

We have the same power in Processing, via the built-in 
function randomSeed(). That function takes any integer 
as input, and initializes the pseudo-random number 
generator using that integer. The actual number you 
pass in is basically irrelevant, except: 

• Different seeds will drop you in at different points 
in the pattern 

• If you reset Processing with the same seed, you’ll 
get the same pattern of random numbers 
afterwards 

With that in mind, Processing does something useful 
for you—when your sketch starts, it sets the random 
seed to a value based on the current time, making the 
numbers seem “more random”. But you can override 
that default behaviour at any time by using 
randomSeed(). 

Pseudo-random numbers are perfectly fine as a 
source of chaos for art and design purposes, but it’s 
very dangerous to assume blindly that they’re truly 
random. Cryptographic systems based on 
pseudorandom numbers are easier to hack. Gambling 
machines that use pseudorandom numbers without 

println( random( 1 ) );



care can be beaten. When real randomness matters, 
there are better sources and better algorithms, 
though it’s always a hard problem. 

d 
Slashes and backslashes 

Let’s start to look at using randomness in context, 
with the following amazingly simple (non-Processing) 
program: 

This program loops forever, randomly printing forward 
and backward slashes. The result looks a bit like a 
random maze, though it isn’t truly a maze (there are 
loops and closed-off passages). It may seem 
innocuous, but this program is the subject of an entire 
book on computer art, written by a group that 
includes Casey Reas, one of the creators of 
Processing. 

It isn’t too hard to translate this into a Processing 
sketch, though it’s better to use more than one line of 
code. 

10 PRINT CHR$(205.5+RND(1)); : GOTO 10 Don’t bother trying to run this 
program, unless you’re using 
the BASIC programming 
language on a Commodore 64.

http://www.blackjackforumonline.com/content/how_to_beat_keno.htm
http://10print.org/


Notice that we get a different design every time we 
run the sketch. That’s good: it means that our random 
numbers keep changing, like we would hope. 

But that lack of repetition can also be a liability. What 
if we want to redraw the frame in the same (or almost 
the same) way? If we do so naively, we get different 
random decisions, and the pattern changes 
chaotically. 

void setup() 
{ 
  size( 600, 400 ); 
  strokeCap( ROUND ); 
  strokeWeight( 7 ); 
  stroke( 0 ); 
  noFill(); 

  background( 255 ); 
   
  for( int y = 0; y < height; y += 20 ) { 
    for( int x = 0; x < width; x += 20 ) { 
      if( random(1) <= 0.5 ) { 
        line( x, y, x + 20, y + 20 ); 
      } else { 
        line( x + 20, y, x, y + 20 ); 
      } 
    } 
  } 
}



One way to resolve this chaos is to make all the 
random numbers you need once up front, and set 
them aside. For example, we might create a 2D array 
of random numbers, and always refer back to them 
when drawing the slashes and backslashes. (Exercise: 
do it!) But there’s a much more elegant approach: just 
use the built-in function randomSeed() at the start of 
each frame to re-initialize the random number 
generator to produce the same sequence of “coin 
flips”. 

Note the use of the constant 0.5 in the code above. 
When we say random(1), we get an unpredictable 
floating-point number that’s at least 0 and less than 1. 
What would happen if we chose a number less than 
0.5? If we chose one higher? What if we made the 
number change over space or time? 

Example sketch: TenPrint

void setup() 
{ 
  size( 600, 400 ); 
  strokeCap( ROUND ); 
  strokeWeight( 7 ); 
  stroke( 0 ); 
  noFill(); 
} 

void draw() 
{ 
  background( 255 ); 
   
  for( int y = 0; y < height; y += 20 ) { 
    for( int x = 0; x < width; x += 20 ) { 
      if( random(1) <= 0.5 ) { 
        line( x, y, x + 20, y + 20 ); 
      } else { 
        line( x + 20, y, x, y + 20 ); 
      } 
    } 
  } 
}



So far this sketch works fine, but what if we want to 
scroll the random maze? We can restart the sequence 
of random numbers, but we can’t translate it or 
otherwise extend it to cover new grid cells as they 
enter the screen. What we really need is some way to 
conceptually “attach” random numbers to every point 
in an ambient field in space. That would let us develop 
a theoretically infinite grid of slashes and backslashes, 
and simply show a small fragment of it in every frame. 

That’s one possible use of the built-in noise() function. 
This function can be passed one, two, or three 
floating-point numbers as parameters. In one 
dimension, the noise function produces an 
unpredictable number for every input. But that 
number never changes—it’s permanently associated 
with the input number. This behaviour is very different 
from random()! The numbers passed in to noise() are 
like coordinates, as if you’re looking up a number in a 
map. Every time you look up the same coordinates, 
you get the same answer. But multiple calls to random() 
will produce a sequence of distinct values. 

By default, the noise() function has interesting 
statistical properties. At very fine scales (i.e., when 
you zoom in on it), it changes slowly and looks very 
smooth.  As you zoom out is gets more chaotic, but at 
some point the function runs out of randomness and 
starts repeating. Still, there’s a wide range in which 
you can use this function productively. 

float m = 0.01; // We’ll vary this 
   
void setup() 
{ 
  size( 600, 200 ); 
  noFill(); 
  background( 255 ); 
  beginShape(); 
  for( int idx = 0; idx < width; ++idx ) { 
    vertex( idx, noise(idx*m)*200 ); 
  } 
  endShape(); 
}



For the random 10 PRINT sketches, we can use the 
two-parameter version of the noise() function to 
assign random orientations to every line in the plane, 
whether or not we actually draw it. Then, we can even 
add direct manipulation and use the mouse to explore 
a conceptually infinite random pattern. 

d 

m = 0.01

m = 0.1

m = 1

m = 50000

Example sketch: TenPrintNoise

Example sketch: TenPrintManip

Example sketch: Truchet

Example sketch: QBert



Combining fractals and randomness 

Let’s explore two examples that combine fractals and 
randomness. 

Diminishing circles 

It’s easy to write a Processing sketch that places a set 
of circles completely at random. Things get more 
interesting when ask that the circles not intersect. We 
need to maintain explicit arrays for the centres and 
radii of the circles, and use code to check whether a 
new circle intersects any existing one before drawing 
it. 

We also gradually diminish the radius of the circles 
we’re trying to add. Circles never fill up the plane 
completely, so as the radius goes down we always 
eventually find places to fit new circles. 

This sketch suggests a general framework for creating 
fractal-like structures. We place objects wherever they 
fit. If nothing fits, make the objects smaller. Repeat for 
as long as desired. This technique is explored in a 
paper by Dunham and Shier, and in some 2D and 3D 
examples by Paul Bourke. On the more mathematical 
side, fractals like the Apollonian Gasket are a kind 
idealized version of this circle fractal. 

Mountains 

A standard technique for generating fractal mountain 
ranges is called midpoint displacement. Given some 
lines that make up a mountain range, we divide each 
line in half and randomly move the midpoint up or 
down. The amount of displacement in Y is 
proportional to the distance between the line’s 
endpoints in X, so that we add finer details as we work 
at smaller scales. It’s easiest to use recursion to 
generate a 2D fractal mountain range.  
In addition to the number of levels remaining in the 
recursion, each recursive call takes four float 
parameters that describe the current line segment to 

Example sketch: DiminishingCircles

http://archive.bridgesmathart.org/2014/bridges2014-79.pdf
http://www.paulbourke.net/texture_colour/randomtile/
http://en.wikipedia.org/wiki/Apollonian_gasket


“mountainify”. The base case simply draws the line 
segment. The recursive case computes the midpoint 
of the line segment (i.e., the averages of the X and Y 
coordinates). It generates a random displacement and 
moves the Y coordinate of the midpoint up or down 
by that distance, scaled by the width of the segment 
(the difference between the X values of its endpoints) 
and a global scaling factor. Then it recursively draws 
two sub-mountains, one based on the left sub-
segment and one on the right sub-segment. These 
could be drawn using lots of calls to line(), though a 
more elegant approach is to use beginShape(), 
endShape(), and vertex(). 

This same technique adapts naturally to 3D, though 
the recursion is more complicated because we have to 
express the connectivity between every mountain 
point and its neighbours in a 2D grid. 

Example sketch: Mountains


