
CS 106 Winter 2016
Craig S. Kaplan

Module 09

The shape of data

Topics

• The scale of data
• Data shapes

Readings

• None

d
Introduction

We utterly awash in data. Collectively, humanity
generates a truly staggering amount of information on
a continual basis. One doesn’t have to look too hard to
find estimates of the magnitude of this information. A
good site that provides an overview is
www.internetlivestats.com. We send hundreds of
billions of email messages per day (mostly spam, but
still), and hundreds of billions of instant messages on
top of that. Of course, the amount of data in these
messages is quite small—video is the real bandwidth
hog on the internet. It’s estimated that 37% of all
internet traffic in North America is due to Netflix
alone.

What’s the real challenge here? Obviously there are
serious engineering challenges involved in creating a
worldwide infrastructure that can handle this torrent
of information. It takes big technology to collect and
generate information, to store it, to move it from place
to place, and to access it efficiently. All of those
operations consume electricity and generate waste
heat, and so the energy efficiency of large data

http://www.internetlivestats.com

centres is rapidly becoming a major technological
problem for the 21st century. Of course, this course
will not address these engineering challenges! For us,
there’s a more fundamental problem that dominates:
how do we find meaning in this data? How do we find
and keep the tiny slice of the global information feed
that’s of interest to us, and build tools to increase our
understanding of it?

In this course we won’t solve those problems either,
but we can start to examine some of the
programming tools that will help us, and that lead
naturally to the ones used out in the world for data
manipulation, analysis, and visualization. Here are a
few small examples of ways that we allow
programmers to help us make sense of data:

• Searching and indexing: computers can track
complex relationships between documents and the
pieces that make them up. Your email client can
index a message based on the words it contains, so
that you can easily filter emails later and find one
that you care about. Your computer might maintain
an index of all the files you’ve edited based on
filename and time, so that you can go back later and
find that assignment submission after you forget
what folder you dropped it into. 

• Collecting, correlating, recommending: computers
can build simple models of our interests and
preferences based on explicit clues we provide and a
number of hints in our online habits. We can codify
our collective wisdom and use it to figure out where
to go out for dinner, what movies and music we
might like, and even who we might hit it off with
romantically. The same technology is used to try to
show you online ads that you’re more likely to click
on, since more ad clicks generates more revenue for
websites. (I’m not judging whether these
technologies are good or bad—I find many of them
creepy myself—I’m just giving examples of what’s
out there today.) 

• Patterns, trends, predictions: If we feed a large
enough volume of data into analysis or visualization
software, we can sometimes spot trends that would

have been too difficult to see when looking at
information at a normal human scale. We use this
sort of analysis to decide whether an incoming email
message is spam, so that we never need see it in our
inbox. We now use large-scale data analysis to look
for trends in human health, to predict the spread of
disease or find causes of illnesses. Governments use
profiling technology to identify potential terrorists.
The media uses it to make predictions about the
outcomes of elections. (Again, not judging, just
enumerating.)

d
Data shapes

Let’s set aside rich multimedia data like images, sound
and video for the time being and think only about
data that comes to us in text form. Even in this simple
form, it helps to think about the “shape” of the data.
How is it organized? How do the individual parts of
the data relate to the whole, and to each other?
Answers to questions like these can have a profound
effect on the kind of code we end up writing to
process that data, and the structures we use to
represent it. Of course, these are high-level design
questions, and therefore they don’t necessarily have
one right answer. But it’s important to have some
answer in mind when setting out to write a program,
to avoid getting lost in manifold options.

With that in mind, here are a few typical “data shapes”
that we might encounter when dealing with real-world
information, together with some thoughts about how
programmers think about dealing with such data.

d
Raw text

Raw text doesn’t have any particular structure apart
from being one large block of undifferentiated text.
This text might represent a chapter from a book, the
body of an email, a transcript of a speech, or many
other things. The most natural way to store a block of

raw text in Processing is undoubtedly to use a String.
Of course, we may often end up using an array of
Strings instead, since that is the type of information
given back to us by the built-in loadStrings() function
and many of our textual information will come to us
from external files.  
 
With raw text, we might ask questions like search
queries: does this text contain a given word? Of
course, more elaborate visualizations are always
possible. A fun recent analysis extracted the relative
frequencies of punctuation marks in passages from
different novels, revealing that authors differed
significantly in their punctuation styles. Perhaps the
most famous visualization style for raw text is the
word cloud, as exemplified by wordle.net. Duke
university has a page with a number of additional text
visualizations.

d
Sequences

We are often presented a collection of related pieces
of information that flow in a natural sequence. Earlier
in the term we drew a bar graph of oil prices, given a
list of prices over a two-month period (as a text file).
We might record the positions of objects over time by
writing their x and y coordinates to a text file. We
might be interested in processing a list of words, or of
names, or ingredients for recipes, and so on.

Any time we have a sequence of information, we’ll
probably want to store it in some kind of sequence
data structure. The most obvious choice, and the one
we’ve used throughout this term, is the array, though
there are in fact many other options available to us. A
skilled programmer will pick the best sequence type
to use in a given context; for this course, we’ll be able
to do just about everything with arrays.

When dealing with an array, you should immediately
be thinking about using a for loop at some point:
you’ll probably want to visit every element in the array

http://www.vox.com/2016/2/17/11036614/punctuation-visualization
http://wordle.net
http://guides.library.duke.edu/text_analysis/text_vis

and extract something from it or modify it in some
way. We might walk through an array to find an
element of interest to us, or perhaps apply the same
transformation (e.g., adding one) to every element.

d
Dictionaries

A dictionary is a way to create an association or
mapping from a set of keys to a set of values. A key is
a unique identifier that we use to keep track of a set
of objects that we’re interested in, and the value is the
information associated with that key.

In an actual dictionary, the keys are words and the
values are the definitions of those words. A more apt
example of a dictionary in this course would be the
mapping from Clicker IDs to student ID numbers,
which ensures that we know who to assign marks to
when you answer a clicker question. Every key (i.e.,
every Clicker ID in our dictionary) should map to
exactly one student ID. Another example is the exam
seating chart, which maps student IDs to seat
numbers in the exam room.

In a dictionary, we expect to perform operations like
looking up the value associated with a key, adding a
new key/value pair, and removing a key and its
associated value. In theory we could imagine storing a
dictionary as an array, where every element of the
array keeps track of both a key and a value. If we were
mapping String keys to int values, we might end up
with code like this: 

This works, but it’s actually quite slow. In practice
there are far better ways to represent dictionaries. We
won’t try to implement them ourselves! In Processing
we have easy access to classes like IntDict (which
maps Strings to ints) and StringDict (Strings to
Strings). See the Processing documentation for more,
including sample code that uses these built-in classes.

d
Tables

A simple spreadsheet is basically a grid of numbers.
Many databases also look more or less like grids—they
consist of sequences of records, where each record is
some kind of aggregate piece of data containing
many small fields. The most obvious and
straightforward example of a database of this kind
would be the database of all your music, as
maintained by iTunes.

class Assoc
{
 String my_key;
 int my_value;
};

Assoc[] my_dictionary;

int lookup(String a_key)
{
 for(int idx = 0; idx < my_dictionary.length; ++idx) {
 if(a_key.equals(my_dictionary[idx].my_key)) {
 return my_value;
 }
 }
 // Key not found, must return something.
 return -1;
}

We still have a 2D grid here, and we can think about
the meaning of the rows (individual songs) and of the
columns (properties of songs). Each cell in the grid
consists of a single property of one song, like its title
or duration. Another example might be your list of
contacts on your mobile phone: a list of people, where
each person has a first and last name, an email
address, a phone number, and so on.

There are two natural ways to thing about organizing
this sort of “table-shaped” data. The first is to use a
class that represents a row of the table, with one field
for each piece of data in a record. In the case of songs
in iTunes, we might come up with this:

class Song
{
 String title;
 String artist;
 int duration;
 String genre;
 // ... Other pieces of information here
}

Then, the entire database can be represented as an
array of Song instances.

The other approach would be to use a data structure
that explicitly recognizes the 2D grid. In Processing,
there is a built-in class called Table that does exactly
this. Working with a Table instance is a bit like working
with an Excel spreadsheet: you can read and write the
values of individual cells, add and remove rows and
columns, and so on. And as we’ll see, this class can
read and write comma-separated values (.csv) files,
which are compatible with most spreadsheet
packages.

d
Hierarchical data

Sometimes, information is stored hierarchically: a
given piece of information may have “children”
underneath it, which themselves may have further
children, and on and on. The family tree of a person’s
descendants is a good first example: any given person
may be the “end” of the hierarchy, or the tree may
continue underneath them if they have children. The
organizational chart of a company behaves similarly
(though the arrangement gets complicated if an
employee has multiple supervisors). The filesystem on
your computer is very much hierarchical: every folder
might contain files and still more folders. A final
example is threaded online discussions, as one might
find on reddit. There, every comment has a unique
parent (the comment it replied to), and may be the
bottom of the chain or have further replies beneath it.

In all of these cases, we need to represent the
information in a kind of tree, where each “node” in the
tree is aware of the nodes that are underneath it.
Often, when we want to process this tree, we’ll want
to visit every node. If that node has children, we must
visit them too, but we can’t predict the “shape” of the
tree in advance. Therefore, in this context we often
write recursive functions.

We won’t work a lot with trees in this course, but at
the very end we’ll look briefly at JSON as a means of

receiving live information from Web APIs. JSON
(Javascript Object Notation) is a way to represent
hierarchical information as text; the other popular way
to do so is XML.

d
Graph-structured data

Thinking still more generally, sometimes the
connections between pieces of information is more or
less arbitrary. Consider friend networks in social
media. Facebook consists of a large block of data for
each user. Users are connected via a “friendship” link.
But there’s no strict hierarchy or organization. Any
individual could potentially be friends with any other,
or not. The only thing we know is that friendship is
always mutual on Facebook: if I’m friends with you,
then you’re friends with me. Mathematicians refer to
this kind of structure as an undirected graph: a set of
nodes and a set of two-way connections between
those nodes. The alternative, a directed graph, is
modelled perfectly by Twitter. Twitter’s connection is
“following”, and I can follow you without you following
me. When drawing a network to represent
connections in a directed graph, we would usually
include an arrowhead to indicate the “direction” of the
connection.

We won’t attempt to do anything with graphs in this
course. I just wanted to include one final example in
this section of notes to show that there are more
complicated data shapes that you can discover after
moving beyond the material you’ll see here.

