
CS 106 Winter 2016
Craig S. Kaplan

Module 11

Structured Data

Topics

• Working with tabular data
• Working with hierarchical data
• Accessing live APIs

Readings

• TBA

d
Introduction

In the previous module we explored some fairly simple
“data shapes” in the context of text processing. We
looked at blocks of text that were almost completely
unstructured, in which we could nevertheless find
meaning by searching with tools like regular
expressions. We also saw a few examples based on
simple sequences of data, like the word list used to
power a spell checker.

In this final module, we’ll look at data shapes where
there’s more built-in structure. Specifically, we’ll
consider tabular data (e.g., spreadsheets) and
hierarchical data (e.g., family trees). The data we
process will still be stored in text files, but we’ll use
more powerful tools to recognize the structure in
those text files and take advantage of it.

d
Tabular data

For our purposes, a table is a rectangular grid of
values, much like a spreadsheet. The grid has rows
and columns. We usually think of each row as defining
a single cohesive piece of data, a collection of
individual pieces of information that are all related.
Each column defines one piece of data associated
with each record. In an iTunes music library, the rows
are records that describe each song you own; the
columns are pieces of information associated with
songs (title, artist, genre, etc.). In a marking
spreadsheet, the rows correspond to students and the
columns to things that were marked (assignments,
exams, etc.). Each column may have a heading (a
name), and probably has a type (which we’ll limit to
String, float, and int).

A standard, platform-independent format for storing
tabular data is a CSV (Comma-Separated Values) file.
There are many online resources from which one can
download interesting CSVs, whether it’s fun
collections of random data or governmental sites like
the Region of Waterloo’s catalog of public data. From
the first of those sites, we’ll play with the file
HairEyeColor.csv, containing basic physical attributes
of the students in a statistics class. The file starts out
like this:

The top line of the file gives heading names to the
columns—the words “Hair”, “Eye”, and so on are not
actually part of the dataset. Each line below that
contains a row of data. For example, the record

"","Hair","Eye","Sex","Freq"
"1","Black","Brown","Male",32
"2","Brown","Brown","Male",53
"3","Red","Brown","Male",10
"4","Blond","Brown","Male",3
"5","Black","Blue","Male",11
“6","Brown","Blue","Male",50
…

https://vincentarelbundock.github.io/Rdatasets/datasets.html
http://www.regionofwaterloo.ca/opendata
https://vincentarelbundock.github.io/Rdatasets/csv/datasets/HairEyeColor.csv

labeled “1” tells us that the class had 32 male students
with black hair and brown eyes.

Now, without any extra tools, we might still be able to
extract meaning from this file using straightforward
text processing. We already know how to read the file
line-by-line, and we could break that line into fields by
using splitTokens() with the comma as a delimiter. But
there’s a better way, because Processing understands
this file type directly. If we save this file to a sketch’s
data folder, we could write code like this:

The built-in function loadTable() reads the file from
the data folder and interprets it as a table. It stores
the result in an instance of a special Processing class
called Table, and gives you back that instance as a
result. The loadTable() function takes an optional
second parameter, a String. In this case the value
“header” is used to instruct Processing to treat the first
line of the file as a set of heading names rather than
as data.

Working with an instance of Table is a bit like using
Microsoft Excel, except that you tell the spreadsheet
what you want to do by writing code. Most obviously,
there are methods for figuring out the dimensions of
the table and for reading and writing individual cells.
There are also more complicated methods for building
tables from scratch and finding rows that match
certain patterns. It’s not the most fully-featured
implementation of a spreadsheet, but it’s good
enough for our purposes. See the documentation for
the Table and TableRow classes for full information.

Accessing a cell in a table is like accessing a pixel in an
image: you need to provide two “coordinates”,
corresponding to the row and column of the cell. But

Table stats;

void setup()
{
 stats = loadTable(
 "HairEyeColor.csv", "header");
}

be careful: in a table, the row (which is a bit like the y
coordinate of a pixel) comes first, as it does in a cell
name like “B5” in Excel.

For example, we might calculate the total number of
students in the statistics class by adding the following
code to the setup() function defined above:

The expression stats.getInt(idx, “Freq”) asks the
table to give us the contents of the Freq column of the
idxth row. The table needs to know what type we
expect to find in that cell, which is why there are
getInt(), getFloat() and getString() methods. Note
that we could also have said stats.getInt(idx, 4),
giving the explicit column number containing the
value we’re looking for. When the column has a
heading, we’re allowed to use that name instead.

Or perhaps we want to know the total number of
blond students, in which case we first read the “Hair”
column and check that the colour is the one we’re
interested in:

int total = 0;

for (int idx = 0; idx < stats.getRowCount(); ++idx) {

 total += stats.getInt(idx, "Freq");

}

println(total);

int total = 0;

for (int idx = 0; idx < stats.getRowCount(); ++idx) {

 if (stats.getString(idx, "Hair").equals("Blond")) {

 total += stats.getInt(idx, "Freq");

 }

}

println(total);

d
Building a table

Looking through the catalogue of available data, I
became curious about “Reserved Street Names”,
which claims to be available as a CSV. As it turns out,
that’s a lie. The CSV link opens up a text file with cute
boxes drawn using ASCII Art:

OK, yes, they also make the same data available in an
Excel spreadsheet, and I could easily export a real
CSV file from Excel. But this turns out to be a nice
lesson in handling messy real-world data. We should
be able to write some Processing code to read this file
despite the extraneous ASCII Art. We can use the Text
Processing tools we learned previously to extract the
useful bits from this file. Examining the file, it’s clear
that any line that starts with a hyphen (“-“) can be
discarded. In each useful line, the bits we care about
(the street name and municipality) are separated by
“|” characters, which we can treat as a delimiter. Using
those ideas, we can construct a table from scratch:

| FullStreetName | Municipality |

| Abbey Glen | Kitchener |

| Aberle | Woolwich |

| Abeth | Kitchener |

| Abitibi | Cambridge |

| Able | Cambridge |

| Abram Clemens St | Kitchener |

http://www.regionofwaterloo.ca/en/regionalGovernment/ReservedStreetnamesDataset.asp

Once we’ve constructed the table above, we could
then treat it like any other table and decide how we’d
like to process the data.

Let’s move on to something more interesting: money.
The province of Ontario requires that the salaries of all
public sector employees who make over $100,000 a
year be made available to the public. The data is all
online. Again, though, it’s not in a particularly
convenient format: you can look at it as HTML on a
web page, or you can download a PDF. That’s a good
starting point, but what if I want to perform real
calculations on the data? For example:

• Who is the most highly paid person in a given sector
in the province? The most highly paid at a given
institution?

• What is the average salary for all the people with a
given job title?

• What’s the most extreme salary inversion, e.g., the
highest paid junior professor?

Table table = new Table();

table.addColumn("Name");

table.addColumn("Municipality");

String[] lines =

loadStrings("ReservedStreetnames.txt");

for (int idx = 0; idx < lines.length; ++idx) {

 if (!lines[idx].startsWith("-")) {

 String[] boxes = splitTokens(lines[idx], "|");

 boxes = trim(boxes);

 if (!boxes[0].equals("FullStreetName")) {

 TableRow row = table.addRow();

 row.setString("Name", boxes[0]);

 row.setString("Municipality", boxes[1]);

 }

 }

}

Example sketch: ReservedStreetsTable

http://www.fin.gov.on.ca/en/publications/salarydisclosure/pssd/

It’s perhaps inconsiderate of the province to make this
information available in a format that can’t easily be
used as a basis for further calculation. But we can
usually work around that deficiency. Computer
scientists sometimes talk of “scraping”, “snarfing”, or
“munging” data. A good starting point in this case
might be to examine the HTML source of the web
page, and do text processing (using regular
expression?) to extract the individual fields from the
HTML. It’s not obvious, but there’s a much easier way
to do this—simply highlight the entire table on one of
these HTML pages and copy it into a text file. My
Chrome browser inserts tab characters at all column
breaks in the table. We can then take advantage of a
second option for the second argument to
loadTable(): we can tell is to treat the file as tab-
separated values (TSV) instead of comma-separated
values.

Note the comma in “header, tsv”. That’s not part of
Processing per se. That’s something that the person
who implemented loadTable() decided on as a way to
pass more than one optional parameter to the
function.

Actually this doesn’t quite work, because when we cut
and paste the salary table we don’t get a header row.
But that’s a small problem. The easiest fix is to tweak
the data file and add that first row manually so that
the table “knows about” the names of its columns.

One final problem is that we want to collapse the two
final columns of the table in the source file into a
single column containing the sum of salaries and
benefits. The sample sketch shows how to do this.

Table table = loadTable(
 ”salaries.txt”, “header, tsv");

Example sketch: SalariesTable

As a final example of reading tabular data, consider
the Region of Waterloo’s food inspection reports. This
dataset is more like what’s called a “relational
database”. It comes in three separate tables:

• A Facilities file, in which each row gives complete
information about a single food-serving facility in
the region. The first column is a unique ID code
associated with each facility, which will be used in
the other tables to refer to it.

• An Inspections file, a table that lists individual
inspections in which someone visited a facility. Each
inspection has its own unique ID, and mentions the
ID of the facility to record where the inspection took
place.

• An Infractions file. Each inspection may result in zero
or more infractions against the food safety code.
These infractions are recorded one per row in this
file. The infraction record refers back to the
inspection ID.

The good news is that each of these files is in a proper
CSV format, and can be read into a sketch in a single
line of code. The difficulty is that in order to do
interesting things, you have to gather information
from across multiple tables. For example, here’s how
to list all the infractions associated with a given
restaurant, given the restaurant’s name:

• Iterate over the rows of the Facilities table. For each
row, check if the “BUSINESS_NAME” column
matches the name you’re looking for. If it does, save
the ID associated with that name.

• Iterate over the rows of the Inspections table. For
each row, if the “FACILITYID” column matches the
facility you’re looking for, append the associated
inspection ID to an array of strings.

• Finally, gather together an array of all the infractions
in the Infractions table whose “INSPECTION_ID” is in
the list of IDs set aside in the previous step.

Wow, that’s a lot of work. It’s more than I expected
would be necessary when I started playing with the
dataset, and more than I would ever ask for in this
course. But the result is fairly cool—a sketch in which
you can type in the name of a restaurant and see a

complete list of its infractions. That was sufficiently
worthwhile that I decided to include it here. (It’s still
only a bit over 100 lines of code.)

d
Hierarchical data

Sometimes we want to obtain data from the outside
world that isn’t as cleanly structured as an array of
objects or a table. For example, we might want to load
in all of the information about a restaurant. That data
might include a wide array of heterogeneous data:

• The name, address and phone number of the
restaurant (as strings)

• The opening hours, which could be an array of seven
objects, each of which is made up of two strings
(the opening time and closing time each day of the
week). Or maybe each time is given as two integers,
and hour and a minute

• A list of strings giving links to review sites
• A set of menus (breakfast, lunch, dinner), each of

which contains a heading describing the menu
together with an array of records giving names,
descriptions and prices of dishes.

• etc.

Data shapes like arrays and tables are good for lots of
applications (including sub-parts of our hypothetical
restaurant information), but they just can’t handle this
kind of freeform structured data in full. There are
numerous ways that this kind of data does get
represented in practice. Two very popular forms are
XML (eXtended Markup Language, which we won’t
talk about in this course) and JSON (JavaScript
Object Notation, which will form the rest of the
module).

JSON is a very small subset of the Javascript (not
Java!) language, which can be used to describe
collections of data. It started out as a means for a

Example sketch: FoodInspections

script running on a web page to exchange data with a
web server. But it was so simple and useful that it
became a bit of a standard way for programs to send
structured information back and forth. In particular,
it’s built in to Processing.

Loading JSON objects

The simplest way to get a JSON object into a sketch is
to load it from a file. The format should be familiar by
now, as it’s analogous to reading images, vector
illustrations and tables.

Reading data from JSON objects

A JSONObject behaves a lot like an instance of a class. It
has a number of named fields, and each field has an
associated type, and stores a value. There are six
types that we’ll need to think about for fields. A field
can have one of the familiar types int, float, boolean or
String. A field can also contain an array, which is
stored using the class JSONArray, or it can even contain
a nested (smaller) JSONObject.

However, a JSONObject’s fields aren’t treated like class
fields by Processing. So after loading in my_obj above,
you can’t say something simple like my_obj.fieldname
as you might with a regular class instance. Instead,
you need to call a method of my_obj that reads the
contents of the field for you. If you knew that your
JSONObject had a field called “name” of type String
and a field called “weight” of type int, then you could
write code like this:

A JSONObject can contain another JSONObject in one of
its fields, and it can contain a JSONArray in one of its
fields. Similarly, a JSONArray can contain a JSONObject or
another JSONArray in any of its numbered entries.

JSONObject my_obj =  
 loadJSONObject("data.json");

String obj_name = my_obj.getString("name");
int obj_weight = my_obj.getInt("weight");

In a way, this is a bit more like
reading the value associated
with a key in a dictionary
object.

There’s nothing magical about this, but it just means
that there may be cases where you need to attach a
few calls to, e.g., getJSONObject() together to “drill
down” to the lowest level of a chunk of hierarchical
data:

…or, if you’re feeling a bit more intense, you can do all
of this in one statement, borrowing a bit of unusual
syntax from ControlP5:

You almost certainly won’t be constructing JSONObject
instances from scratch, so once you’ve acquired an
instance by loading it in, you basically just need to use
the methods getString(), getInt(), getFloat(),
getBoolean(), getJSONArray(), and getJSONObject(). Each
of these methods takes a single String as its
argument, corresponding to the name of the field you
want to retrieve. The JSONArray class supports exactly
the same methods, except in that case they take an
int as an argument, corresponding to the location you
want to read from the array. It’s a bit like reading a
character from a string. The string likes to pretend it’s
an array but it isn’t, so you must use the charAt()
method instead of square brackets. With a JSONArray
you must use one of the get methods above.

The easiest way to tell what fields a JSON object
supports is to read the documentation provided by
whoever gave you the object. If that doesn’t work, it’s
helpful to look at the object itself (i.e., the raw input
file)—they’re pretty easy to read, which is sort of the
point.

JSONArray my_arr = my_obj.getJSONArray("data");
JSONObject my_event = my_arr.getJSONObject(0);
String name = my_event.getString("name");

String name = my_obj
 .getJSONArray("data")
 .getJSONObject(0)
 .getString("name");

Example sketch: SimplestJSON

d
Web APIs

An API (Application Programming Interface) is a fancy
software engineering name for something we’ve dealt
with all term. It’s the set of functions that a given
library understands, through which you access its
features. So far this term, all the APIs we’ve used have
either been built in to Processing, or accessible
through an import statement.

But here’s the exciting bit—many online services offer
APIs as well! We use many online services these days
that organize vast amounts of data on our behalf.
Social media certainly works this way (Facebook
stores piles of status updates, photos, notes, lists of
friends etc.), as do photo-sharing sites, cloud-based
storage, and other information resources. Some of
these services publish public APIs through which you
can access the underlying data without having to
knock on the front door by visiting the service with a
web browser. This is a very powerful idea: it lets you
write you own custom applications that use a pile of
data without getting stuck with the service’s view of
how that data should be viewed. It’s also useful to the
company themselves, since they can standardize on
how information is sent back and forth across a
number of devices and operating systems.

You can think of accessing a Web API as “calling a
function over the internet”. You’re calling a function in
order to obtain some piece of information as a result,
but instead of your computer working out the answer
to the function on its own, it sends the request off to a
second computer. That computer figures out the
answer and ships it back to you in the form of a
JSONObject (or some other structured data value).

In order to call the function you want, you need to
package up your request into a form that can be sent
off to the other computer. The nice bit is that this
doesn’t require any new ideas or code. Web API calls

look just like URLs, and you can “call the function” by
giving the URL you want to loadJSONObject().

A good source of examples is api.uwaterloo.ca, the
University of Waterloo’s own internal open data API. It
supports a number of different function calls that
return information about the campus and its environs.
Visit the API’s documentation page to see the list of
queries you can make. If you want to find out the
current weather, for example, you can access the
following URL: https://api.uwaterloo.ca/v2/weather/
current.json. Try it now in your browser! Hopefully it
will show you the text of the JSON as output (it works
in Chrome, at least). So, if you store that JSON object
in a variable:

Then you can start querying the variable weather to
find out things like the current temperature and
precipitation.

If you try other UW API calls, you’ll find that they
return an error object saying that you need an API key.
Most Web APIs require you to pass in a key along with
your request. The key identifies you, and allows the
web service to track how much you’re using their data
(which is useful, for example, if they want to bill you
for your use of their service, or at least cut you off if
you abuse the service).

If you try searching the internet for the name of your
favourite online service together with “API”, you’ll see
the range of tools available to programmers. Twitter’s
API is a particularly well known one. Facebook has
one for the graph of your connections to your friends,
but not for status updates. The Google Maps API
powers a large number of online tools by third parties.
Even IMDB and Rotten Tomatoes publish APIs for
getting at live movie data. Many mobile apps are
really just thin user interfaces wrapped around
accesses to Web APIs. Waterloo’s getting in on the
game too. As of last year, the API powers the new
Waterloo Student Portal.

JSONObject weather =
 loadJSONObject("https://api.uwaterloo.ca/v2/weather/current.json");

http://api.uwaterloo.ca
https://github.com/uWaterloo/api-documentation#accessing-the-api
https://api.uwaterloo.ca/v2/weather/current.json

