
CS115 - Module 1

Cameron Morland

Fall 2017

Cameron Morland CS115 - Module 1

Welcome to CS 115

Information about the course is on the website:
https://www.student.cs.uwaterloo.ca/˜cs115/

Contact info for everyone is there, but if in doubt, send me an email:
cjmorland@uwaterloo.ca

If you have a laptop with you, please install DrRacket right away: racket-lang.org
Your labs will help you get acquainted with DrRacket.

Cameron Morland CS115 - Module 1

https://www.student.cs.uwaterloo.ca/~cs115/
cjmorland@uwaterloo.ca
racket-lang.org

Am I in the right course?

There are alternatives to this course!
CS135 and CS145 cover essentially the same content, but in greater depth.
If you wish to be a CS major, you do not need to take 135; you may be able to take CS116
then CS136. But taking 135 may be preferable.
If you are not a math student, you may prefer CS105.

Cameron Morland CS115 - Module 1

First Week Tasks

Be sure you do all the following:

1 Install DrRacket on your laptop.

2 Find out about your labs, and participate in the first one.

3 From the website https://www.student.cs.uwaterloo.ca/˜cs115/ download
the course notes and review the course details, including survival guide, marking scheme,
and grade appeals policy.

4 Bookmark the course textbook, http://www.htdp.org , and read the appropriate
sections.

5 Register your iClicker, and see how clickers affect your grade. Details are on the course
website.

6 Complete Assignment 00.

Cameron Morland CS115 - Module 1

https://www.student.cs.uwaterloo.ca/~cs115/
http://www.htdp.org

Participation

Your participation mark comes from clicker questions in class. The purpose of these questions
is encourage participation and provide feedback on your learning.
You receive 2 marks for each correct answer, 1 mark for each incorrect answer. The best 75%
of all questions is used to calculate your grade.
You must attend your own section to receive these grades.
Never use another student’s clicker.
Register your clicker on the CS115 website, not at the central UW website!

Cameron Morland CS115 - Module 1

Assignments

Most of your learning comes from struggling with material. You learn little from merely
copying work from another.

All assignments are to be done individually.
Don’t look at someone else’s programs written for an assignment, or show your programs to
someone else. Don’t search on the web or in books other than the textbook for answers to
assignment questions, or even for hints.

Start your assignments early, and bring questions to office hours as soon as possible.
Use labs to get practice.

Cameron Morland CS115 - Module 1

Role of Programming Languages

Computers run only machine code. This is machine code:
6a0: 55 push %rbp
6a1: 48 89 e5 mov %rsp,%rbp
6a4: 48 83 ec 10 sub $0x10,%rsp
6a8: 89 7d fc mov %edi,-0x4(%rbp)
6ab: 89 75 f8 mov %esi,-0x8(%rbp)
6ae: 89 55 f4 mov %edx,-0xc(%rbp)
6b1: 83 7d f4 00 cmpl $0x0,-0xc(%rbp)
6b5: 75 05 jne 6bc <fibonacci+0x1c>
6b7: 8b 45 f8 mov -0x8(%rbp),%eax
6ba: eb 1a jmp 6d6 <fibonacci+0x36>
6bc: 8b 45 f4 mov -0xc(%rbp),%eax
6bf: 8d 50 ff lea -0x1(%rax),%edx
6c2: 8b 4d fc mov -0x4(%rbp),%ecx
6c5: 8b 45 f8 mov -0x8(%rbp),%eax
6c8: 01 c1 add %eax,%ecx
6ca: 8b 45 f8 mov -0x8(%rbp),%eax

Cameron Morland CS115 - Module 1

Role of Programming Languages

It is easier to write in a higher level language, like C, which is compiled to machine code:
// fibonacci(previous, latest, count): returns the
// count-th number following latest in the Fibonacci
// sequence, where previous is the one before latest.
// fibonacci: Nat Nat Nat -> Nat
// Examples:
// fibonacci(0, 1, 0) => 1
// fibonacci(0, 1, 4) => 5
// fibonacci(5, 8, 1) => 13
int fibonacci(int previous, int latest, int count) {
if (count == 0) {
return latest;

} else {
return fibonacci(latest, previous + latest, count-1);

}
}

Cameron Morland CS115 - Module 1

The Design Process

We will cover the whole process of designing programs.

clever, ad-hoc solutions to
problems (hard to
generalize)

→ design: the intelligent,
extendable use of technique

←
technique: fixed ways of

doing things
(little thought required)

Careful use of design processes can save time and reduce frustration, even with the fairly small
programs written in this course.

Cameron Morland CS115 - Module 1

Themes of the course

Design (the art of creation)

Abstraction (finding commonality, ignore irrelevant details)

Refinement (revising and improving initial ideas)

Syntax (how to say things), expressiveness (how easy it is to say and understand), and
semantics (the meaning of what is said)

Communication

Cameron Morland CS115 - Module 1

Simple Racket programs

We will start by doing some simple calculations.

Vocabulary:

In g(x , y) = x − y , x and y are called the parameters of g . In a function application
such as g(5, 3), 5 and 3 are the arguments for the parameters.

We evaluate an expression such as g(3, 1) by substitution. Thus g(3, 1) = 3− 1 = 2.

The function consumes 3 and 1, and produces 2.

Cameron Morland CS115 - Module 1

Built-in functions

There are many built in functions, too many to list here.
In the menus: Help→Racket Documentation.
A few of particular interest:

(quotient n m) performs integer division (discarding the remainder). For example,
(quotient 75 7) ⇒ 10

(remainder n m) computes the remainder of integer division. For example,
(remainder 75 7) ⇒ 5

Cameron Morland CS115 - Module 1

Racket expressions and errors

What is wrong with each of the following?

(* (5) 3)

(+ (* 2 4)

(5 * 14)

(* + 3 5 2)

(/ 25 0)

Cameron Morland CS115 - Module 1

Syntax and Semantics

Syntax refers to the ways we may express things. Racket syntax is very simple. Every
expression is either a value such as a number, or of the form (fname A B...),
where fname is the name of a function, and A and B are expressions. (Details
later.)

(* (5) 3) contains a syntax error since 5 is not the name of a function.
(5 * 14) has the same syntax error.
(+ (* 2 4) contains a syntax error since the brackets don’t match.

Semantics refers to the meaning of what we say. Semantic errors occur when an
expression (which has correct syntax) cannot be reduced to a value by
substitution rules.

(* + 3 5 2) contains a semantic error since we cannot multiply “plus”
with 3, 5, and 2.
(/ 25 0) contains a semantic error since we cannot divide by zero.

Cameron Morland CS115 - Module 1

Defining functions in Mathematics

name of
function

formal
parameter(s)
of function

"binds" name
to body

body of
function

(expression)

A few important observations:

Changing names of parameters does not change what the function does.
f (x) = x2 and f (z) = z2 have the same behaviour.

Different functions may use the same parameter name.

Parameter order matters. g(3, 1) = 3− 1 but g(1, 3) = 1− 3.

Calling a function creates a new value.

Cameron Morland CS115 - Module 1

Defining functions in Racket

To translate f (x) = x2 and g(x , y) = x − y into Racket:
(define (f x) (* x x))

(define (g x y) (- x y))

define is a special form. It looks like a Racket function but not all its arguments are evaluated.
It binds a name to an expression. This expression may use the parameters which follow the
name, along with other built-in and user-defined functions.

(define (
name︷︸︸︷
g x y︸︷︷︸

parameters

)

body expression︷ ︸︸ ︷
(- x y))

Cameron Morland CS115 - Module 1

Identifiers

Functions and parameters are named by identifiers, like f, x, y.

Identifiers can contain letters, numbers, -, _, ., ? and some other characters.

Identifiers cannot contain space, brackets of any kind, or quotation marks like ‘’"

A few examples:
(define (g x y) (- x y))

(define (square-it! it!) (* it! it!))

(define (2remainder? n) (remainder n 2))

Cameron Morland CS115 - Module 1

Reviewing our observations

As with Mathematical functions:

Changing names of parameters does not change what the function does.
(define (f x) (* x x)) and (define (f z) (* z z)) have the same behaviour.

Different functions may use the same parameter name; there is no problem with
(define (f x) (* x x))

(define (g x y) (- x y))

Parameter order matters.
(define (g x y) (- x y))

and
(define (g y x) (- x y))

are not the same.

Cameron Morland CS115 - Module 1

Constants in Racket

Racket also allows a special type called a constant:
(define k 3)

Now k gives 3.
(define p (* k k))

The expression (* k k) is evaluated, and constant p takes the value 9.

(define
name︷︸︸︷
p

body expression︷ ︸︸ ︷
(* k k))

There are a few built-in constants, including pi and e. Some programs might make their own
constants, such as interest-rate or step-size.
Constants can make your code easier to understand and easier to change.
Note: what the CS 115 course notes calls “constants”, the textbook calls “variables”.

Cameron Morland CS115 - Module 1

The importance of semantics

“Big red trucks drive quickly” is an English sentence with correct syntax and clear semantic
interpretation.
“colorless green ideas sleep furiously” 1 has the same syntax, but no clear semantic
interpretation.
“Students hate annoying professors” and “I saw her duck” both have ambiguous semantic
interpretation; they have multiple possible meanings.
Computer languages are designed so every program has at most one semantic interpretation.

1from Syntactic Structures by Noam Chomsky, 1957.
Cameron Morland CS115 - Module 1

Interpreting programs

Given these definitions:
(define foo 4)
(define (bar a b) (+ a a b))

What is the value of this expression?
(* foo (bar 5 (/ 8 foo)))

Cameron Morland CS115 - Module 1

A model of Racket semantics

We wish to be able to predict the behaviour of any Racket program.
We can do this by viewing running a program as applying a set of substitution rules. Any
expression which is not a definition we will simplify to a single value.
For example, consider
(* 3 (+ 1 (+ (/ 6 2) 5)))

Since the semantic interpretation of (/ 6 2) is 3, we can simplify:
⇒ (* 3 (+ 1 (+ 3 5)))

Complete the interpretation of (* 3 (+ 1 (+ (/ 6 2) 5)))

⇒ (* 3 (+ 1 8))

⇒ (* 3 9)

⇒ 27

Cameron Morland CS115 - Module 1

A model of Racket semantics

Now consider the following program:
(define (f x) (* x x))
(define (g x y) (- x y))
(g (f 2) (g 3 1))

The semantic interpretation of (f 2) is (* 2 2), so simplify:
⇒ (g (* 2 2) (g 3 1))

Complete the interpretation of (g (f 2) (g 3 1))

⇒ (g 4 (g 3 1))

⇒ (g 4 (- 3 1))

⇒ (g 4 2)

⇒ (- 4 2)

⇒ 2

Cameron Morland CS115 - Module 1

Rules for evaluating a Racket expression

Goal: a unique sequence of substitution steps for any expression.
Recall from before:
“Every expression is either a value such as a number, or of the form (fname A B...), where
fname is the name of a function, and A and B are expressions.”

Major approach: to evaluate an expression such as (fname A B), evaluate the arguments
A and B, then apply the function to the resulting values.

For example, to evaluate (+ (/ 6 2) 5), first we need to evaluate (/ 6 2), which gives 3.
The other argument, 5, is already evaluated. The expression becomes (+ 3 5), so apply the +

function to the values 3 and 5, giving 8.
Note: we do not evaluate definitions; we use definitions to evaluate expressions.

Cameron Morland CS115 - Module 1

Let’s all do it the same way

Evaluate arguments starting at the left.

For example, given (* (+ 2 3) (+ 5 7)), perform the substitution (+ 2 3) ⇒ 5 before the
substitution (+ 5 7) ⇒ 12.
(Note: this choice is arbitrary, and every choice will give the same final value. But if we all do
it the same way it’s easier to communicate what we are doing.)

Cameron Morland CS115 - Module 1

Substitution rules

Built-in function application use mathematical rules.
E.g. (+ 3 5) ⇒ 8

Value no substitution needed.

Constant replace the identifier by the value to which it is bound.
(define x 3)
(* x (+ x 5))

⇒ (* 3 (+ x 5))

⇒ (* 3 (+ 3 5))

Cameron Morland CS115 - Module 1

User-defined function application a function is defined by (define (f x1 x2 ... xn) exp).
Simplify a function application (f v1 v2 ... vn) by replacing all occurrences of
the parameter xi by the value vi in the expression exp. For example,
(define (foo a b) (+ a (- a b)))
(foo 4 3)

⇒ (+ 4 (- 4 3))

Note: each vi must be a value. To evaluate (foo (+ 2 2) 3), do not substitute (+ 2 2) for
a, to give (+ (+ 2 2) (- (+ 2 2) 3)).
Always remember to evaluate the arguments first.

Cameron Morland CS115 - Module 1

Beware of tricksters...

What is the value?
(define x 4)
(define (f x) (* x x))
(f 3)

(define (huh? huh?) (+ huh? 2))
(huh? 4)

(define y 3)
(define (g x) (+ x y))
(g 5)

(define z 3)
(define (h z) (+ z z))
(h 7)

Cameron Morland CS115 - Module 1

Tracing a program

Applying simplification rules such as these allows us to predict what a program will do. This is
called tracing.
Tracing allows you to determine if your code is semantically correct – that it does what is
supposed to do.
If no rules can be applied but an expression cannot be further simplified, there is an error in the
program. For example (sqr 2 3) cannot be simplified since sqr has only one parameter.
Be prepared to demonstrate tracing on exams.
The Stepper may not use the same tracing rules, even if it gives the same result. Write your
own trace to ensure you understand your code.

Cameron Morland CS115 - Module 1

Tracing practice

Trace the program:
(+ (remainder (- 10 2) (quotient 10 3)) (* 2 3))

⇒ (+ (remainder 8 (quotient 10 3)) (* 2 3))

⇒ (+ (remainder 8 3) (* 2 3))

⇒ (+ 2 (* 2 3))

⇒ (+ 2 6)

⇒ 8

Cameron Morland CS115 - Module 1

Constructing a function

Write a Racket function corresponding to

g(x , y) = x
√
x + y2

(define (g x y) (+ (* x (sqrt x)) (* y y)))

Cameron Morland CS115 - Module 1

Tracing practice

Trace the program: (Note: (sqrt n) computes
√
n and (sqr n) computes n2)

(define (disc a b c) (sqrt (- (sqr b) (* 4 (* a c)))))
(define (proot a b c) (/ (+ (- 0 b) (disc a b c)) (* 2 a)))
(proot 1 3 2)

⇒ (/ (+ (- 0 3) (disc 1 3 2)) (* 2 1))

⇒ (/ (+ -3 (disc 1 3 2)) (* 2 1))

⇒ (/ (+ -3 (sqrt (- (sqr 3) (* 4 (* 1 2))))) (* 2 1))

⇒ (/ (+ -3 (sqrt (- 9 (* 4 (* 1 2))))) (* 2 1))

⇒ (/ (+ -3 (sqrt (- 9 (* 4 2)))) (* 2 1))

⇒ (/ (+ -3 (sqrt (- 9 8))) (* 2 1))

⇒ (/ (+ -3 (sqrt 1)) (* 2 1))

⇒ (/ (+ -3 1) (* 2 1))

⇒ (/ -2 (* 2 1))

⇒ (/ -2 2)

⇒ -1
Cameron Morland CS115 - Module 1

Module summary

The official course notes have a list of goals at the end of each module. You should ensure you
are able to do everything it lists.
Before we begin the next module, please

Read How to Design Programs, sections 1-3

Read the Survival Guide on assignment style & submission

Cameron Morland CS115 - Module 1

