
CS115 - Module 3 - Booleans, Conditionals, and Symbols

Cameron Morland

Fall 2017

Reminder: if you have not already, ensure you:

Read How to Design Programs, sections 4-5

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Booleans (Bool)

<, >, and = are new functions, each of which produces a boolean value (Bool).
(< 4 6)

(> 4 6)

(= 5 7)

Each produces #true or #false. These are the only values a Bool may take.
(You may see #true called true or #t, and see #false called false or #f.)
Note: keep track of order! < a b corresponds to a < b.
A function which produces a Bool is called a predicate. Often the name of predicates end
with ?, as in string=?

Other predicates include even? and odd?

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Who cares?!? Conditionals

−1 0 1 2

−1

0

1

2 A sin-squared window, used in signal
processing, can be described by

f (x) =

0 for x < 0

1 for x ≥ 1

sin2(xπ/2) for 0 ≤ x < 1

Racket gives us an easy way to design such
things in a special form called cond.

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Using cond to describe cases

f (x) =

0 for x < 0

1 for x ≥ 1

sin2(xπ/2) for 0 ≤ x < 1

(define (ssqw x)
(cond

[(< x 0) 0]
[(>= x 1) 1]
[(< x 1) (sqr (sin (* x pi 0.5)))]
))

cond is a special form, not a function. We deal with it in a special way. In particular, do not
evaluate its arguments until necessary.
Each argument of cond is a pair of square brackets around a pair of expressions:
question answer.

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Evaluating a cond statement

How do we evaluate a cond?
Informally, evaluate a cond by considering
the question/answer pairs in order, top to
bottom. When considering a
question/answer pair, evalute the
question. If the question evaluates to
true, the whole cond takes the answer.

(define (ssqw x)
(cond

[(< x 0) 0]
[(>= x 1) 1]
[(< x 1) (sqr (sin (* x pi 0.5)))]
))

For example consider, (ssqw 4).
⇒
(cond

[(< 4 0) 0]
[(>= 4 1) 1]
[(< 4 1) (sqr (sin (* 4 pi 0.5)))]
)

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Problem solving with cond

(define (ssqw x)
(cond

[(< x 0) 0]
[(>= x 1) 1]
[(< x 1) (sqr (sin (* x pi 0.5)))]
))

Use cond to write a function (absolute-value n) which produces |n|.
(There is a built-in function abs which does this, but don’t use it now.)

a(n) =

{
−n if n < 0

n if n ≥ 0

(define (absolute-value n)
(cond
[(< n 0) (- n)]
[(>= n 0) n]
))

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

No satisfied questions

What happens if none of the questions evaluate to true?
(define (absolute-value n)
(cond

[(> n 0) n]
[(< n 0) (- n)]
))

An error occurs with this (absolute-value 0).
This can be helpful — if we try to consider all the possibilities, but we miss one, testing may
raise this error. Then we can fix it.
But sometimes we want to only describe some conditions, and do something different if none
of them are satisfied.

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

else

We could use a question which always evalutes to true:
(define (absolute-value n)
(cond

[(> n 0) n]
[true (- n)]
))

Remember: the question/answer pairs are considered in order, top to bottom, and it stops as
soon as it finds a question which evaluates to true.
This is useful sufficiently frequently that there is special keyword for it: else.
(define (absolute-value n)
(cond

[(> n 0) n]
[else (- n)]
))

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Tracing cond

Recall we are imagining interpreting our programs as a series of substitutions, called a trace.
How do we trace cond?
The general form of a conditional is
(cond
[question1 answer1]
[question2 answer2]
...
[questionk answerk])

To evaluate the conditional, evaluate question1, then perform the following substitutions:

(cond [false exp0][exp1 exp2]...) ⇒ (cond [exp1 exp2]...)

(cond [true exp0][exp1 exp2]...) ⇒ exp0

(cond [else exp0]) ⇒ exp0

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Tracing cond example

(cond [false exp0][exp1 exp2]...)⇒ (cond [exp1 exp2]...)
(cond [true exp0][exp1 exp2]...)⇒ exp0
(cond [else exp0])⇒ exp0

(define (ssqw x) ...)

(ssqw 0)

⇒ (cond [(< 0 0) 0] [(>= 0 1) 1] [(< 0 1) (sqr (sin (* 0 pi 0.5)))])

⇒ (cond [false 0] [(>= 0 1) 1] [(< 0 1) (sqr (sin (* 0 pi 0.5)))])

⇒ (cond [(>= 0 1) 1] [(< 0 1) (sqr (sin (* 0 pi 0.5)))])

⇒ (cond [false 1] [(< 0 1) (sqr (sin (* 0 pi 0.5)))])

⇒ (cond [(< 0 1) (sqr (sin (* 0 pi 0.5)))])

⇒ (cond [true (sqr (sin (* 0 pi 0.5)))])

⇒ (sqr (sin (* 0 pi 0.5)))

⇒ (sqr (sin 0))

⇒ (sqr 0)

⇒ 0

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Tracing cond

(define (qux a b)
(cond

[(= a b) 42]
[(> a (+ 3 b)) (* a b)]
[(> a b) (- b a)]
[else -42]))

(qux 5 4)

Perform a complete trace of this program.

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Testing cond

You should write tests so each question is evaluated to true at least once, to verify each
answer is tested.
Include tests for boundaries; it is easy to get “off-by-one” errors!
Suppose I wanted a function which produces 0 for negative numbers, 1 for positive numbers 10
or less, and 2 for other numbers. What should I test?
I should check boundaries (−1, 0, 1) and (10, 11), some other negative number, and some
larger number.
categorize.rkt

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

categorize.rkt

and now for something completely different

We combine predicates using the special forms and, r, and the function not. These all
consume and produce Bool values.

and produces false if at least one of its arguments is false, and true otherwise.

or produces true if at least one of its arguments is true and false otherwise.

not produces true if its argument is false, and false if its argument is true.

A few examples:

(and (> 5 4) (> 7 2)) ⇒ true

(or (> 5 4) (> 7 2)) ⇒ true

(and (> 5 4) (< 7 2)) ⇒ false

(or (> 5 4) (> 7 2)) ⇒ true

(not (= 5 4)) ⇒ true

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

An important subtlety interpreting and and or: short-circuiting

and and or are not functions. They are special forms. Do not evaluate their arguments until
necessary.
Informally, evaluate the arguments one by one, and stop as soon as possible.
For example:
(define (baz x)
(and (not (= 0 x))

(> 0 (cos (/ 1 x)))))

If I run (baz 0), attempting to evaluate the expression (/ 1 x), would cause a division by zero
error. But when x is zero, the first argument of and is false, so the second is not evaluated.

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Substitution rules for and

Use the following rules for tracing and:

(and true exp ...) ⇒ (and exp ...)

(and false exp ...) ⇒ false

(and) ⇒ true

Note: this is not what the stepper does! If in this course you are asked to perform a
trace, follow these rules.

Perform a trace of (and (= 3 3) (> 7 4) (< 7 4) (> 0 (/ 3 0)))

⇒ (and true (> 7 4) (< 7 4) (> 0 (/ 3 0)))

⇒ (and (> 7 4) (< 7 4) (> 0 (/ 3 0)))

⇒ (and true (< 7 4) (> 0 (/ 3 0)))

⇒ (and (< 7 4) (> 0 (/ 3 0)))

⇒ (and false (> 0 (/ 3 0)))

⇒ false
Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Substitution rules for or

Use the following rules for tracing or:

(or true exp ...) ⇒ true

(or false exp ...) ⇒ (or exp ...)

(or) ⇒ false

Note: this is not what the stepper does! If in this course you are asked to perform a
trace, follow these rules.

Perform a trace of (or (< 7 4) (= 3 3) (> 7 4) (> 0 (/ 3 0)))

⇒ (or false (= 3 3) (> 7 4) (> 0 (/ 3 0)))

⇒ (or (= 3 3) (> 7 4) (> 0 (/ 3 0)))

⇒ (or true (> 7 4) (> 0 (/ 3 0)))

⇒ true

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Nested Conditionals

A museum offers free admission for people who arrive after 5 pm. Otherwise, the cost of
admission is based on a person’s age: age 10 and under are charged $5 and everyone else is
charged $10.

Write a function admission which produces the admission cost. It consumes two param-
eters: a Bool, after5?, and a positive integer, age.

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Flattening Nested Conditionals

Sometimes it is desirable to flatten the conditionals.
;; admission: Bool Nat

-> Nat
(define (admission

after5? age)
(cond
[after5? 0]
[else
(cond

[(<= age 10) 5]
[else 10]
)

↔

(define (admission
after5? age)

(cond
[after5? 0]
[(and
(not after5?)
(< age 11)) 5]

[else 10]))

↔

(define (admission
after5? age)

(cond
[after5? 0]
[(< age 11) 5]
[else 10]))

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Uses of cond

Conditionals can be used like any other expression:
(define (add-1-if-even n)
(+ n

(cond
[(even? n) 1]
[else 0])))

(or (= x 0)
(cond
[(positive? x) (> x 100)]
[else (< x -100)]))

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Black-box and white-box testing

“In science, computing, and engineering, a black blox is a device. . . which can be
viewed in terms of its inputs and outputs, without any knowledge of its internal
workings.” (Wikipedia)

Black-box testing refers to testing without reference to how the program works. Black-box
tests should be written before you write your code. Your examples are black-box tests.

“A white box is a subsystem whose internals can be viewed but usually not
altered.” (Wikipedia)

White-box testing should exercise every line of code. Design a test to check both sides of every
question in every cond.
These tests are designed after you write your code, by looking at how the code works.

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Developing a Predicate

I wish to develop a predicate cat-start-or-end?, which consumes a Str and determines if the
Str starts or ends with "cat".

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

A data type for symbols: Sym

A symbol is written as a tick ’ followed by the name of the symbol, which follows the same
rules as for identifiers (no spaces, some restrictions on characters).
I can represent the four suits using the four symbols ’diamonds for diamonds, ’clubs for
clubs, ’hearts for hearts, and ’spades for spades.

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Operations on Sym

A Sym is an indivisible, “atomic” value.
The only operation that is possible is symbol=?, which checks if two symbols are equal.
(define trump-suit ’hearts)

(define (trump? suit)
(symbol=? suit trump-suit))

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

When to use Sym and Str

When should we use Sym?

Any time you have a fixed set of items, and don’t need to manipulate them or order them.

When you are doing many equality comparisons. symbol=? is faster than string=?

When shouldn’t we use Sym?

Any time you want to operate on items in any way.

Any time you want to put items in order.

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Problems with the contract

Consider the following function:
;; check-divide: Num -> ???
(define (check-divide n)
(cond [(= 0 n) "undefined"]

[else (/ 1 n)]))

What should the contract be?
It could be a Num or a Str (specifically, "undefined").
Use anyof for situations like this.
;; check-divide: Num -> (anyof Num Str)

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Generalized even

gen-even? consumes an integer, a symbol, or a string, and produces true if the input is ’even,
"even", or an even integer, and false otherwise.
(gen-even? v) produce true if v is ’even, "even", or an even integer.

Write the contract for gen-even?

Design examples and tests for gen-even?

Write the body of the function gen-even?

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Checking the type of a value

There’s a problem when we go to write the body. We don’t know what type v is.
Built-in predicates to the rescue!
number?, integer?, symbol?, and string? each have one parameter, and indicate if the value
is a Num, Int, Sym, and Str respectively.

Write the body of the function gen-even?

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Generalized equality checking

The built-in predicate (equal? a b) produces true if a, b are the same type, and if they have
the same value.
This is very handy if things may not be the same type.

Rewrite gen-even? using equal?

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

Module summary

Become comfortable using cond expressions, and, or, and not.
Remember how to test these expressions, and know what black-box and white-box testing are.
Make sure you understand short-circuiting in and and or.
Become skillful at tracing code which includes cond, and, and or.
Be able to write programs using Sym.
Understand the use of anyof and be able to use it in your programs.

Before we begin the next module, please

Read How to Design Programs, sections 6-7, omitting 6.2, 6.6, 6.7, and 7.4.

Cameron Morland CS115 - Module 3 - Booleans, Conditionals, and Symbols

