
CS115 - Module 4 - Compound data: structures

Cameron Morland

Fall 2017

Reminder: if you have not already, ensure you:

Read How to Design Programs, sections 6-7, omitting 6.2, 6.6, 6.7, and 7.4.

Cameron Morland CS115 - Module 4 - Compound data: structures



Compound data

It often comes up that we wish to join several pieces of data to form a single “package”. We
can then write function that consume and produce such packages.

A few examples:

A complex number

z = a + bi

is built of a real part a and
an imaginary part bi .

A record in a student
database might include the
student’s name, ID number,
and program.
{
name: "James Bond"
ID: 00000007
program: ’pure-math

}

A labelled rooted binary tree
has a la-
bel, left-child and right-child.

3

4

2 5

0

1 6
Cameron Morland CS115 - Module 4 - Compound data: structures



A Built-in structure: Posn

A Posn (short for Position) is a built-in structure that has two fields containing numbers
intended to represent x and y coordinates. The computer knows these are called x and y.
You can create a Posn using the constructor function, make-posn. Its contract is
;; make-posn Num Num -> Posn

(define my-posn (make-posn 4 3))

Note here were are storing two things, namely the x and y coordinates, in one value, which is a
Posn.

Cameron Morland CS115 - Module 4 - Compound data: structures



A Built-in structure: Posn

If you ask for the value of a Posn, it appears to just copy whatever you said.
(define my-posn (make-posn 4 3))

my-posn ⇒ (make-posn 4 3)

This is just like the quotation marks on a Str or Sym:
(define my-str "foo")

my-str ⇒ "foo"

(define my-sym ’oak)

my-sym ⇒ ’oak

Cameron Morland CS115 - Module 4 - Compound data: structures



Selectors

With a Str, we have special functions which get a part of the value:
(substring "foobar" 0 3) ⇒ "foo"

In a somewhat similar way, with a Posn, we have two selector functions. Each selector
produces the field which has the name of the selector:
(posn-x (make-posn 4 3)) ⇒ 4

(posn-y (make-posn 4 3)) ⇒ 3

Note: these selectors are called posn-x and posn-y because the value is a posn, and the fields
are named x and y. Every structure has only the fields which are defined on it.

Cameron Morland CS115 - Module 4 - Compound data: structures



Type predicates

One last function: the type predicate.
(posn? 42) ⇒ false

(posn? ’oak) ⇒ false

(posn? my-posn) ⇒ true

The type predicate produces true if its argument is some object of that type.

Cameron Morland CS115 - Module 4 - Compound data: structures



Distance between two Posn

Recall (posn-x p) produces the x coordinate, and (posn-y p) produces the y coordinate. So
the difference in x coordinate between points p1 and p2 is
(- (posn-x p1) (posn-x p2))

(x1, y1)

(x2, y2)

;; (distance p1 p2) produce the distance between
;; p1 and p2.
;; distance: Posn Posn -> Num
;; Example:
(check-expect (distance (make-posn 0 0)

(make-posn 3 4)) 5)

(define (distance p1 p2)

...)

Complete the function distance.

Cameron Morland CS115 - Module 4 - Compound data: structures



Producing a Posn

A function may produce a Posn just like any other value.
;; (offset-a-little x y) produce the point which is
;; moved over 3 and up 3 from (x, y).
;; offset-a-little: Num Num -> Posn
;; Example:
(check-expect (offset-a-little 5 7) (make-posn 8 10))

(define (offset-a-little x y)
(make-posn (+ x 3) (+ y 3)))

Write a function +vector that consumes two Posn and does vector addition.
(That is, it produces a new Posn where the x value is the sum of the x values, and y is
the sum of the y values.)

Cameron Morland CS115 - Module 4 - Compound data: structures



Custom structures

We can define a custom structure using the define-struct special form:
(define-struct polarcoord (r theta))

polarcoord is the name of the new structure type

(r theta) are the names of the fields of the structure.

This automatically creates several functions:

Constructor make-polarcoord allows us to create values of this type

Predicate polarcoord? lets us determine if a value is of this type

Selectors are created, one for each field.
In this example, polarcoord-r and polarcoord-theta.

Cameron Morland CS115 - Module 4 - Compound data: structures



Custom structures

(define-struct polarcoord (r theta))

This define-struct does not tell us what the fields mean. So we need to document these;
this is done in a comment called a data definition:
;; a Polarcoord is a (make-polarcoord Num Num)
;; Requires:
;; r is the distance to the point. r > 0.
;; theta is angle from the x-axis.

The data definition tells us:

the type of each field, in a line resembling a contract.

the meaning of each field, in a Requires section.

Cameron Morland CS115 - Module 4 - Compound data: structures



Consuming custom structures

Write a function polarcoord->posn that consumes a Polarcoord and produces the Posn

corresponding to the same point.
(Mathematically, x = r cos θ and y = r sin θ.)

;; (polarcoord->posn p) convert p to rectangular coordinates
;; polarcoord->posn: Polarcoord -> Posn
;; Example:
(check-within (polarcoord->posn (make-polarcoord 2 (/ pi 4)))

(make-posn (sqrt 2) (sqrt 2)) 0.0001)

(define (polarcoord->posn p)
(make-posn (* (polarcoord-r p) (cos (polarcoord-theta p)))

(* (polarcoord-r p) (sin (polarcoord-theta p)))

Cameron Morland CS115 - Module 4 - Compound data: structures



Producing custom structures

Write a function rotate-polar that consumes a Polarcoord and a Num and produces a
Polarcoord modified by rotating it by the Num.

;; (rotate-polar p angle) produce p rotated by angle.
;; rotate-polar: Polarcoord Num -> Polarcoord
;; Example:
(check-expect (rotate-polar (make-polarcoord 3 0.4) 0.2)

(make-polarcoord 3 0.6))

(define (rotate-polar p angle)
(make-polarcoord (polarcoord-r p)

(+ angle (polarcoord-theta p))))

Cameron Morland CS115 - Module 4 - Compound data: structures



Misusing Posn

What is the result of evaluating the following expression?
(define (pt1 (make-posn "Math135" "CS115")))
(define (pt2 (make-posn ’Red true)))
(distance pt1 pt2)

This causes a run-time error, but not at make-posn.
Inside distance, there it attempts to compute (- "Math 135" ’Red), which is nonsense.
The system does not enforce contracts. If your contract says Int, but you give it a Str,
problems will probably occur.

Cameron Morland CS115 - Module 4 - Compound data: structures



Contract Errors

;; (scale pt factor) produce pt
;; scaled by factor.
;; scale: Posn Num -> Posn

(define (scale pt factor)
(make-posn (* factor (posn-x pt))

(* factor (posn-y pt))))

(scale 2 ’George)

⇒
(make-posn (* ’George (posn-x 2))

(* ’George (posn-y 2)))

Contract errors will often manifest when we can’t simplify an expression.
In this case, we can’t use posn-x on 2.

Cameron Morland CS115 - Module 4 - Compound data: structures



Static Typing

Many languages have static typing. Here the type of every value and parameter is specified as
part of the code. If you break the “contract” the code will not compile.

typedef struct {
float x;
float y;

} Posn;

float distance (Posn p1, Posn p2);

int main(void) {
Posn p1 = {2.0, 5.0};
Posn p2 = {3.0, 4.0};

distance(p1, p2);
}

This works fine! But if I add distance(p1, 3); it gives this error:
distance.c: In function ’main’:
distance.c:20:16: error: incompatible type for argument 2 of ’distance’

distance(p1, 3);
ˆ

This can make it easier to write and debug your code.

Cameron Morland CS115 - Module 4 - Compound data: structures



Dynamic Typing

Other languages, including Racket, have dynamic typing.
This gives certain flexibility:
;; (classify n) determine if n is even or negative.
;; Otherwise produce n.
;; classify: Int -> (anyof Sym Nat)

(define (classify n)
(cond [(even? n) ’even]

[(negative? n) ’negative]
[else n]))

(define (explain n)
(cond [(symbol? (classify n)) ’even-or-negative]

[else ’positive-and-odd]))

Here a function can produce or consume values of different types in different contexts.
This can make it easier to write and debug your code.

Cameron Morland CS115 - Module 4 - Compound data: structures



Dealing with dynamic typing

While Racket does not enforce contracts, we will always assume that contracts are followed.

Never call a function with arguments that violate the contract and requirements. If you
desire to use one of your own helper functions in a way that violates its contract, that
likely means you should modify its contract!

Cameron Morland CS115 - Module 4 - Compound data: structures



Templates and data-directed design

One of the ideas of the HtDP textbook is that the form of a program may mirror the form of
the data.
A template is a general framework which we will complete with specifics. It is a starting point
for our implementation.
A template is derived from a data definition. When we create a new form of data, create the
template. Use the template in writing functions to consume that type of data.

(define-struct student
(name id program))

;; a Student is a
;; (make-student Str Nat Sym)
;; Requires:
;; name is the student’s name
;; id is 8 digits long
;; program is sometimes fun.

;; template for a function that
;; consumes a Student.

;; my-student-fn: Student -> Any
(define (my-student-fn s)
(...(student-name s)...

The template lists all the selectors, but does
nothing. To write a function, replace the dots
with code, and remove unused selectors.

Cameron Morland CS115 - Module 4 - Compound data: structures



Suppose I have a complicated structure:

(define-struct household (me sally fish cat thing1 thing2))
;; a Household is is a (make-household Nat Nat Nat Nat Nat Nat)
;; Requires:
;; me is my age
;; sally is Sally’s age
;; cat is the cat’s age, etc.

and I want to change just one field. Do I really have to do all this work?!?

;; update-cat: Household -> Household
(define (update-cat house newcat)
(make-household
(household-me house)
(household-sally house)
(household-fish house)
newcat
(household-thing1 house)
(household-thing2 house)))

...Yes. Structures in Racket are clumsy. But
don’t get put off structures! They are very
useful, and much easier to use in every other
language I know.
In many languages you would just say
house.cat = newcat

Cameron Morland CS115 - Module 4 - Compound data: structures



Additions to syntax for structures

There are two new things in our syntax.

1 The special form (define-struct sname (field1 ... fieldn)) defines the structure
type and creates:

a constructor function make-sname

a predicate function sname?

n selectors, one for each field, named sname-field1. . .

2 A value has additional possibilities. In addition to begin a Num, Str, Sym, or Bool, it may
be of the form
(make-sname v1...vn)

Cameron Morland CS115 - Module 4 - Compound data: structures



Additions to the Design Recipe for Structures

1 Place your structure definitions and data definitions right at the top of the file, just
after the file header.
(define-struct polarcoord (r theta))
;; a Polarcoord is a (make-polarcoord Num Num)
;; Requires:
;; r is the distance to the point. r > 0.
;; theta is angle from the x-axis.

2 Write a template, with a generic name and generic contract.
(define (my-polarcoord-fn p)

(...(polarcoord-r p)...
...(polarcoord-theta p)...))

The rest of the design recipe is essentially unchanged, except now you have the custom type
(e.g. Polarcoord) which you added.

Cameron Morland CS115 - Module 4 - Compound data: structures



Module summary

Become comfortable using structures: using the built-in Posn structure, and making your own
structures using define-struct.
When working with your custom structures, understand how to use the constructor function,
the type predicate, and the selector functions.

Before we begin the next module, please

Read How to Design Programs, sections 9 and 10.

Cameron Morland CS115 - Module 4 - Compound data: structures


