
CS115 - Module 10 - General Trees

Cameron Morland

Fall 2017

Reminder: if you have not already, ensure you:

Read How to Design Programs, Sections 15 and 16.

Cameron Morland CS115 - Module 10 - General Trees



Arithmetic Expressions

Recall with binary trees we could represent an
expression containing binary operators (which
have exactly 2 arguments), such as

((2× 6) + (5× 2))÷ (5− 3)

÷

−

35

+

×

25

×

62

But in Racket we are’t required to have just 2
arguments. How could we represent
(+ (* 4 2) 3 (+ 5 1 2) 2) ?
We can make a new structure where each node
can have any number of children, instead of
just 2.

+

2+

215

3×

24

Here we still label each node; the only
difference is the number of children.

Cameron Morland CS115 - Module 10 - General Trees



Representing binary vs general arithmetic expressions

Previously, our data definitions were as follows:
;; an Operator is (anyof '+ '- '* '/)

(define-struct binode (op arg1 arg2))
;; a binary arithmetic expression internal node (BINode)
;; is a (make-binode Operator BinExp BinExp)

;; A binary arithmetic expression (BinExp) is either:
;; a Num or
;; a BINode

Now we want all same, except: instead of arg1 and arg2, we will use a list:
(define-struct ainode (op args))
;; an arithmetic expression internal node (AINode)
;; is a (make-ainode Operator (listof AExp))

;; An arithmetic expression (AExp) is either:
;; a Num or
;; a AINode

;; (eval-ainexp expr) return the value of expr.
;; eval-ainexp: AExp -> Num
;; Examples:
(check-expect (eval-ainexp (make-ainode '* (list 2 3 5))) 30)
(check-expect (eval-ainexp

(make-ainode
'+
(list 4

(make-ainode '* (list 2 3 5))
(make-ainode '* (list 2 2 2)))
)) 42)

(define (eval-ainexp expr)
(cond [(number? expr) expr] ; numbers evaluate to themselves

[(symbol=? (ainode-op expr) '*)
(foldr * 1

(map eval-ainexp (ainode-args expr))
)

]
[(symbol=? (ainode-op expr) '+)
(foldr + 0

(map eval-ainexp (ainode-args expr))
)

]
))

;; (count-leaves expr) return the number of leaves in expr.
;; count-leaves: AExp -> Nat
;; Examples:
(check-expect (count-leaves

(make-ainode
'+ (list 2 3 (make-ainode '* (list 6 7 42))))) 5)

(define (count-leaves expr)
(cond [(number? expr) 1]

[else
(foldr + 0 (map count-leaves (ainode-args expr)))]))

Cameron Morland CS115 - Module 10 - General Trees



Representing expressions

So given the data definition:
(define-struct ainode (op args))
;; an arithmetic expression internal node (AINode)
;; is a (make-ainode Operator (listof AExp))

;; An arithmetic expression (AExp) is either:
;; a Num or
;; a AINode

How can we represent an expression such as (+ (* 4 2) 3 (+ 5 1 2) 2) ?

(make-ainode '+ (list (make-ainode '* (list 4 2))
3
(make-ainode '+ (list 5 1 2))
2))

Cameron Morland CS115 - Module 10 - General Trees



Interpreting expressions

When we evaluated binary trees we used the following function:
;; (eval-binexp expr) return the value of expr.
;; eval-binexp: BinExp -> Num
(define (eval-binexp expr)
(cond [(number? expr) expr] ; numbers evaluate to themselves

[(symbol=? (binode-op expr) '*)
(* (eval-binexp (binode-arg1 expr))

(eval-binexp (binode-arg2 expr)))]
[(symbol=? (binode-op expr) '+)
(+ (eval-binexp (binode-arg1 expr))

(eval-binexp (binode-arg2 expr)))]))

All that is different now is that we have a list of values, args, instead of just arg1 and arg2.

Cameron Morland CS115 - Module 10 - General Trees



Evaluating Expressions

Our code for binary expressions is almost perfect. Instead of evaluating exactly two items,
(binode-arg1 expr) and (binode-arg2 expr), then combining them with * or +, we have
this list. We need to replace the code:

(+ (eval-binexp (binode-arg1 expr))
(eval-binexp (binode-arg2 expr)))]))

We need to use evaluate each argument in the list. We could do this recursively. Or use map!
(map eval-ainexp (ainode-args expr))

This takes a list of expressions, evaluates each one, and returns the resulting list.
But now we need to combine them. Again, we could do this recursively. But we don’t need to!
Use foldr instead:

(foldr + 0
(map eval-ainexp (ainode-args expr))
)

Cameron Morland CS115 - Module 10 - General Trees



Evaluating Expressions

The whole code then becomes:
;; (eval-ainexp expr) return the value of expr.
;; eval-ainexp: AExp -> Num
;; Examples:
(check-expect (eval-ainexp (make-ainode '* (list 2 3 5))) 30)

(define (eval-ainexp expr)
(cond [(number? expr) expr] ; numbers evaluate to themselves

[(symbol=? (ainode-op expr) '*)
(foldr * 1

(map eval-ainexp (ainode-args expr))
)

]
[(symbol=? (ainode-op expr) '+)
(foldr + 0

(map eval-ainexp (ainode-args expr))
)

]
))

Cameron Morland CS115 - Module 10 - General Trees



Working with general trees

Recalling the following data definition:
(define-struct ainode (op args))
;; an arithmetic expression internal node (AINode)
;; is a (make-ainode Operator (listof AExp))

;; An arithmetic expression (AExp) is either:
;; a Num or
;; a AINode

Exercise: Complete count-leaves.
;; (count-leaves expr) return the number of leaves in expr.
;; count-leaves: AExp -> Nat
;; Examples:
(check-expect (count-leaves

(make-ainode
'+ (list 2 3 (make-ainode '* (list 6 7 42))))) 5)

Cameron Morland CS115 - Module 10 - General Trees



Mutual Recursion

When one function calls a second, and the second calls the first, it is called mutual recursion.
Our approach to writing such code is unchanged: write a template for each datatype, based on
the data definition; then build functions following the template.
Consider:

;; an EvenNat is either
;; 0 or
;; (add1 x) where x is an OddNat.

;; an OddNat is a Nat that is not even.

;; (is-even? n) return #true if n is an
;; EvenNat, otherwise #false.
;; is-even?: Nat -> Bool

(define (is-even? n)
(cond [(= n 0) #true]

[else (is-odd? (sub1 n))]))

(define (is-odd? n)
(not (is-even? n)))

Cameron Morland CS115 - Module 10 - General Trees



Mutual Recursion

(define-struct ainode (op args))
;; an arithmetic expression internal node (AINode)
;; is a (make-ainode Operator (listof AExp))

;; An arithmetic expression (AExp) is either:
;; a Num or
;; a AINode

We have defined:

1 AINode, which is defined in terms of (listof AExp)

2 (listof AExp), which is defined in terms of AINode.

If we wrote a recursive function evaluate-and-add to work through the (listof AExp), the
function would itself call eval-ainexp. But eval-ainexp would call evaluate-and-add.
This is a mutually-recursive definition.
An example is worked in the official notes.
The greater simplicity of the solution using filter and map shows their usefulness!



Leaf Labelled Trees

Earlier we worked with trees which had labels on all the nodes. Each node consisted of a
(make-node Label (listof Node)); the Label indicating something about the node (in our
example, the operator, '+ or '*).
We can simplify trees even further by not labelling internal nodes.
;; a leaf-labelled tree (LLT) is a (listof (anyof Num LLT)).

(list 2)

m

2

(list 5 7)

m

5 7

(list 2 (list 5 7) 3)

m

2

5 7

3

(list 2 (list 3 (list 5 7 11)))

m

2

3

5 7 11



Template for Leaf Labelled Trees

;; a leaf-labelled tree (LLT) is a (listof (anyof Num LLT)).

Since a LLT is a list, its template comes from the list template, reproduced here:
;; my-listof-X-fun: (listof X) -> Any
(define (my-listof-X-fun L)
(cond [(empty? L) ... ]

[else (... (first L) ... (my-listof-X-fun (rest L)) ...)]))

Since each item in the list may be a Num or a LLT, we need to distinguish these.
We could recognize the LLT using cons?; for an example, see the official notes.
Instead, I will identify the leaves using number?.
;; my-LLT-fun: LLT -> Any
(define (my-LLT-fun L)
(cond [(empty? L) ... ]

[(number? (first L)) ;; first is a leaf.
(... (first L) ... (my-LLT-fun (rest L)) ...)]

[else ;; first is not a leaf, so it must be an LLT.
(... (my-LLT-fun (first L))

... (my-LLT-fun (rest L)) ...)]))

Cameron Morland CS115 - Module 10 - General Trees



;; a leaf-labelled tree (LLT) is a (listof (anyof Num LLT)).

;; my-LLT-fun: LLT -> Any
(define (my-LLT-fun L)
(cond [(empty? L) ... ]

[(number? (first L)) ;; first is a leaf.
(... (first L) ... (my-LLT-fun (rest L)) ...)]

[else ;; first is not a leaf, so it must be an LLT.
(... (my-LLT-fun (first L))

... (my-LLT-fun (rest L)) ...)]))

Exercise: Following the template, write a function to count the leaves of a LLT.

Exercise: Following the template, complete depth.
;; (depth tree) return the max distance from the root to a leaf of tree.
;; depth: LLT -> Nat
;; Examples:
(check-expect (depth (list 6 7)) 1)
(check-expect (depth (list 2 (list 3 (list 5)))) 3)



More work with filter, map, foldr...

;; a leaf-labelled tree (LLT) is a (listof (anyof Num LLT)).

Complete these exercises without recursion on a list. (You will still need to recurse on the LLT.)

Exercise: Write a function to count the leaves of a LLT.

Exercise: Complete depth.
;; (depth tree) return the max distance from the root to a leaf of tree.
;; depth: LLT -> Nat
;; Examples:
(check-expect (depth (list 6 7)) 1)
(check-expect (depth (list 2 (list 3 (list 5)))) 3)

Cameron Morland CS115 - Module 10 - General Trees



Flattening a list

Sometimes we want to extract the leaves from a leaf-labelled tree. For example:

2 3

5 7 11 ⇒ (list 2 3 5 7 11)

Exercise: Complete flatten. Hint: use the append function.
;; (flatten tree) return the list of leaves in tree.
;; flatten: LLT -> (listof Num)
;; Examples:
(check-expect (flatten (list 1 (list 2 3) 4)) (list 1 2 3 4))
(check-expect (flatten (list 1 (list 2 (list 3 4)))) (list 1 2 3 4))

Cameron Morland CS115 - Module 10 - General Trees



Module summary

Be able to work with general trees and leaf-labelled trees.
Write programs that use recursion on trees, and either recursion or higher order functions on
lists within the trees.
Create templates from data definitions. Use data definitions and templates to guide design of
functions, both recursive and non-recursive.

Cameron Morland CS115 - Module 10 - General Trees



Wrapping up CS115

I want to highlight:

The importance of communication, to other programmers but even to yourself.

That data definitions can guide the design of our programs.

These big ideas transcend language. They will influence your work in CS116 and beyond.

Cameron Morland CS115 - Module 10 - General Trees



Looking ahead to CS116

CS116 uses Python. The syntax of this language is less restricted, which means

There are more ways to say things (which makes things easier to say!)

There are more ways to say things (there is more syntax to learn)

We will work on

Writing programs that are longer, or deal with large amounts of data

Designing programs so they run efficiently

Cameron Morland CS115 - Module 10 - General Trees



Options for continuing CS

CS major:

Take CS 116 and then CS 136.

Talk to a CS advisor about the process.

Many students have been successful in CS after starting in CS 115.

Computing Technology Option:

Take CS 116.

Talk to an advisor to understand your choices.

Note: Participate in course selection! Otherwise, you may not be able to enroll in your
preferred courses.

Cameron Morland CS115 - Module 10 - General Trees


