1. **Bridge contracts: the Level and the Suit**
 For this question, you will submit the functions described in parts 1a and 1b in a single file.

 Bridge is a card game with four players, where the players are divided into two teams with two players each. After the cards are dealt, the players take part in an auction that determines the **contract** for the hand. The contract has two parts: a **level** and a **suit**. The level is a number between 1 and 7 inclusive, and the suit is one of clubs, diamonds, hearts, spades, or no trump. After the hand is played, if the team that won the auction satisfies their contract, then
they get points. The number of points they receive depends on the contract level and suit.

(a) Write a function called basic-points that consumes an integer between 1 and 7 inclusive (level), and a string (suit), which is one of the values "clubs", "diamonds", "hearts", "spades" or "NT", and produces the basic points for that contract. The basic points are calculated according to the following rules:

- minor suits (clubs and diamonds) are worth 20 points per level,
- major suits (hearts and spades) are worth 30 points per level, and
- no trump is worth 40 points for level 1, plus 30 points for all subsequent levels.

For example,

- (basic-points 2 "clubs") produces 40,
- (basic-points 4 "hearts") produces 120, and
- (basic-points 3 "NT") produces 100 (40 points for level 1 and 2 * 30 for the remaining two levels).

(b) There are more rules that determine the actual points for a contract. The contract can be either vulnerable or not vulnerable. The contract may be doubled or redoubled. A contract at level 6 is called a small slam, and is worth bonus points. A contract at level 7 is called a grand slam, and is also worth bonus points. The full amount of points earned for a contract is calculated according to the following rules:

- a redouble can only happen after a double has been bid,
- if the contract is redoubled, it receives
 - 4 times the basic points, as they are described in part [1a] and
 - a 100 point bonus,
- if the contract is doubled, but not redoubled, it receives
 - 2 times the basic points as they are described in part [1a] and
 - a 50 point bonus,
- the following additional bonus points are not affected by doubles or redoubles:
 - a small slam, not vulnerable, receives a 500 point bonus,
 - a small slam, vulnerable, receives a 750 point bonus,
 - a grand slam, not vulnerable, receives a 1000 point bonus, and
 - a grand slam, vulnerable, receives a 1500 point bonus.

Write a function called full-points that consumes an integer (level), a string (suit), and three Boolean values (vulnerable, doubled, and redoubled), and produces the full points for the contract. For example:

- (full-points 3 "NT" false true false) produces 250 (basic points times 2, plus 50 bonus),
- (full-points 6 "spades" true false false) produces 930 (basic points plus 750 bonus), and
- (full-points 7 "diamonds" false true true) produces 1660 (basic points times 4, plus 100 bonus, plus 1000 bonus).

You may use the function basic-points from part [1a] as a helper function for this question.

2. For this question you will submit the functions described in parts [2a], [2b] and [2c] in a single file.

A CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans
Apart CAPTCHA is a test used by websites to try to ensure that a human is accessing the site rather than a bot trying to defeat security. One CAPTCHA technique used by Word Press is to ask people to fill in the blank of a mathematical expression, where some of the values are numbers and some of the values are the words representing the numbers. For example you might see the following:

\[
\text{four } + \underline{\quad} = 11
\]

and you would be expected to fill in the blank with the number 7.

The operation in the mathematical expression could be addition, subtraction, multiplication, or division. There will only be one blank spot, which could appear before or after the operation or after the equals sign. The other two spots could be either words or numbers. All of the values in the calculation will be integers between 1 and 99 inclusive.

(a) Write a function called `word->number` that consumes a string (word) representing an integer between 1 and 99. The word will be composed of lowercase letters and possibly a hyphen. The function should produce the integer that is equal to word. For example,

- `(word->number "seven")` produces 7, and
- `(word->number "twenty-four")` produces 24.

As long as your function produces the correct results for all possible strings, you will receive full marks for correctness. However, for full marks in the Solution Techniques category (which will appear on your marked assignment), your solution should not just check the 99 possible words and convert each one into a number. Include helper functions to reduce the total number of question/answer pairs in your solution. If you are having difficulty figuring out how to do this, then finish the other parts of the assignment first, and then come back to this question.

Hint: If the word has a hyphen, it must appear at position 5, 6 or 7 in the string word.

(b) Write a function called `fill-in-the-blank` that has four parameters: arg1, op, arg2, and answer. The values of arg1, arg2, and answer will be either an integer between 1 and 99 inclusive or the string "blank". Exactly one of the three will have the value "blank". The op will be one of the following strings "+", "-", "*" or "/". The function should produce the number needed to replace the "blank" that makes the mathematical equation: arg1 op arg2 = answer true. The value produced will always be an integer between 1 and 99 inclusive. For example:

- `(fill-in-the-blank 8 "+" "blank" 10)` produces 2,
- `(fill-in-the-blank 21 "/" 3 "blank")` produces 7, and
- `(fill-in-the-blank "blank" "*" 5 20)` produces 4.

(c) Write a function called `captcha` that has four parameters: arg1, op, arg2 and answer. The function will do the same thing as the function `fill-in-the-blank`, except the values of arg1, arg2 and answer could be either an integer between 1 and 99 inclusive, a string representing an integer between 1 and 99 inclusive or the string "blank". For example:

- `(captcha 8 "+" "blank" "ten")` produces 2,
- `(captcha "twenty-one" "/" 3 "blank")` produces 7, and
- `(captcha "blank" "*" "five" "twenty")` produces 4.
You may use \texttt{word->number} and \texttt{fill-in-the-blank} as helper functions for \texttt{captcha}.

3. For this question, you will perform step–by–step evaluations of DrRacket programs, by applying substitution rules until you either arrive at a final value or you cannot continue. You will use an online evaluation tool that we have created for this purpose. To begin, visit this webpage:

\url{https://www.student.cs.uwaterloo.ca/~cs115/stepping}

Notes:
\begin{itemize}
\item You will need to authenticate yourself using your Quest/WatIAm ID and password.
\item Once you are logged in, try the “Warmup questions” under “CS 115 Assignment 3”, in order to get used to the system.
\item You can re–enter a step as many times as necessary until you get it right, so keep trying until you completely finish every question.
\item All you have to do is complete the questions online, we will be recording your answers as you go, and there is no file to submit.
\item Note however that you are not done with a question until you see the message: Question complete!
\item You should see this once you have arrived at a final value and clicked on “simplest form” (or “Error”, depending on the question).
\item You should \textbf{not} use DrRacket’s Stepper to help you with this question for several reasons.
 \begin{itemize}
 \item First, as mentioned in class, DrRacket’s evaluation rules are slightly different from the ones presented in class, but we need you to use the evaluation rules presented in class.
 \item Second, in an exam situation, you will not have DrRacket’s Stepper to help you, and there will definitely be step–by–step evaluation questions on at least one of the exams.
 \end{itemize}
\end{itemize}