Module 3: New types of data

Readings: Sections 4 and 5 of HtDP.

A Racket program applies functions to values to compute new values. These new values may in turn be supplied as arguments to other functions.

So far, we have seen values that are numbers and strings.

In this module, we will see more different types of values.

In the next module, we will learn how to construct new types of values.
The data type Boolean (Bool)

A Boolean value is either true or false.

A Boolean function produces a Boolean value.

Racket provides many built-in Boolean functions (for example, to do comparisons).

(= x y) is equivalent to determining whether “x = y” is true or false, for numbers x and y.

;; = : Num Num → Bool
Boolean values in DrRacket

- Additional constants: #true is equivalent to true, and #false is equivalent to false.

- Within DrRacket, you can choose to use either set of values. DrRacket uses #true and #false by default. We will use true and false in our notes.

- To switch from the default, when setting your language level in DrRacket, choose "Show Details", and choose your preferred set of constants.

- There are also additional constants: #t for true and #f for false.
Other types of comparisons

A *comparison* is a function that consumes two numbers and produces a Boolean value.

Other comparisons:

\((< x y) \)
\((> x y) \)
\((\leq x y) \)
\((\leq x y) \)

We can also compare strings using `string=?`, `string<?`, and so on.
Complex relationships

You may have learned in a math class how mathematical statements can be combined using the connectives AND, OR, NOT.

Racket provides the corresponding and, or, not.

These are used to check complex relationships.

The statement “$3 \leq x < 7$” is the same as “$x \in [3, 7)$”, and can be checked by evaluating

$$(\text{and} \ (\leq \ 3 \ x) \ (\ < \ x \ 7)).$$
Some computational differences

The special forms and and or can each have two or more arguments.

The special form and has value true exactly when all of its arguments have value true.

The special form or has value true exactly when at least one of its arguments has value true.

The function not has value true exactly when its one argument has value false.
The arguments of \texttt{and} and \texttt{or} are evaluated in order from left to right. The evaluation stops as soon as the value can be determined. (This is called \textit{short circuit evaluation}.)

Not all arguments may be evaluated. (This is why \texttt{and} and \texttt{or} are called \textit{special forms} rather than \textit{functions}.)

\begin{verbatim}
(and (>== (string-length str) 3)
 (string=? "cat" (substring str 0 3)))
(or (== x 0) (> (/ 100 x) 5))
\end{verbatim}
Substitution rules for \texttt{and}

Here are the simplifications for application of \texttt{and} (slightly different from the textbook).

\[(\text{and true exp . . . }) \Rightarrow (\text{and exp . . . }).\]

\[(\text{and false exp . . . }) \Rightarrow \text{false}.\]

\[(\text{and}) \Rightarrow \text{true}.\]

The last rule is needed when all arguments evaluate to \texttt{true}.
(define (good? str)
 (and (>=(string-length str) 3)
 (string=? "cat" (substring str 0 3))))

(good? "at")
⇒ (and (>=(string-length "at") 3)
 (string=? "cat" (substring "at" 0 3)))
⇒ (and (> 2 3)
 (string=? "cat" (substring "at" 0 3)))
⇒ (and false (string=? "cat" (substring "at" 0 3)))
⇒ false
(define str "catch")
(and (>= (string-length str) 3)
 (string=? "cat" (substring str 0 3)))
⇒ (and (>= (string-length "catch") 3)
 (string=? "cat" (substring str 0 3)))
⇒ (and (>= 5 3)
 (string=? "cat" (substring str 0 3)))
⇒ (and true (string=? "cat" (substring str 0 3)))
⇒ (and (string=? "cat" (substring str 0 3)))
⇒ (and (string=? "cat" (substring "catch" 0 3)))
⇒ (and (string=? "cat" "cat")) ⇒ (and true) ⇒ (and) ⇒ true
Substitution rules for or

The rules for or are similar, but with the roles of true and false exchanged.

(or true exp ...) ⇒ true.

(or false exp ...) ⇒ (or exp ...).

(or) ⇒ false.
(define x 10)
(or (= x 0) (> (/ 100 x) 5))
⇒ (or (= 10 0) (> (/ 100 x) 5))
⇒ (or false (> (/ 100 x) 5))
⇒ (or (> (/ 100 x) 5))
⇒ (or (> (/ 100 10) 5))
⇒ (or (> 10 5))
⇒ (or true)
⇒ true
(define x 0)
(or (= x 0) (> (/ 100 x) 5))
⇒ (or (= 0 0) (> (/ 100 x) 5))
⇒ (or true (> (/ 100 x) 5))
⇒ true
An example trace using and and or

\[(\text{and} \ (<\ 3 \ 5) \ (\text{or} \ (<\ 1 \ 3) \ (\equiv \ 1 \ 3)) \ (\text{or} \ (>\ 1 \ 5) \ (>\ 2 \ 5)))\]

\[\Rightarrow (\text{and} \ \text{true} \ (\text{or} \ (<\ 1 \ 3) \ (\equiv \ 1 \ 3)) \ (\text{or} \ (>\ 1 \ 5) \ (>\ 2 \ 5)))\]

\[\Rightarrow (\text{and} \ (\text{or} \ (<\ 1 \ 3) \ (\equiv \ 1 \ 3)) \ (\text{or} \ (>\ 1 \ 5) \ (>\ 2 \ 5)))\]

\[\Rightarrow (\text{and} \ (\text{or} \ \text{true} \ (\equiv \ 1 \ 3)) \ (\text{or} \ (>\ 1 \ 5) \ (>\ 2 \ 5)))\]

\[\Rightarrow (\text{and} \ \text{true} \ (\text{or} \ (>\ 1 \ 5) \ (>\ 2 \ 5)))\]

\[\Rightarrow (\text{and} \ (\text{or} \ (>\ 1 \ 5) \ (>\ 2 \ 5)))\]

\[\Rightarrow (\text{and} \ (\text{or} \ \text{false} \ (>\ 2 \ 5)))\]

\[\Rightarrow (\text{and} \ (\text{or} \ (>\ 2 \ 5)))\]

\[\Rightarrow (\text{and} \ (\text{or} \ \text{false}))\]

\[\Rightarrow (\text{and} \ (\text{or})) \Rightarrow (\text{and} \ \text{false}) \Rightarrow \text{false}\]
Predicates

A **predicate** is a function that produces a Boolean result: *true* if data is of a particular form, and *false* otherwise.

Built-in predicates: e.g. `even?`, `negative?`, `zero?`, `string?`

User-defined (require full design recipe!):

```scheme
(define (between? low high nbr)
  (and (< low nbr) (< nbr high)))
```

```scheme
(define (can-drink? age)
  (>= age 19))
```
Conditional expressions

Sometimes expressions should take different values under different conditions.

- These use the special form `cond`.
- Each argument of `cond` is a question/answer pair.
- The question is a Boolean expression.
- The answer is a possible value of the conditional expression.

Example: taking the absolute value of x.

$$|x| = \begin{cases} -x & \text{when } x < 0 \\ x & \text{when } x \geq 0 \end{cases}$$
In Racket, we can compute $|x|$ with the expression

```
(cond
  [(< x 0) (– x)]
  [(>= x 0) x])
```

- square brackets used by convention, for readability
- square brackets and parentheses are equivalent in the teaching languages (must be nested properly)
- `abs` is a built-in Racket function
The general form of a conditional expression is

\[
(\text{cond} \\
\quad [\text{question1 answer1}] \\
\quad [\text{question2 answer2}] \\
\quad \ldots \\
\quad [\text{questionk answerk}])
\]

where questionk could be else.

The questions are evaluated in order; as soon as one evaluates to true, the corresponding answer is evaluated and becomes the value of the whole expression.
• The questions are evaluated in top-to-bottom order.

• As soon as one question is found that evaluates to true, no further questions are evaluated.

• Only one answer is ever evaluated, that is
 – the one associated with the first question that evaluates to true, or
 – the one associated with the else if that is present and reached (all other questions evaluate to false).
Substitution rules for **conds**

There are three substitution rules: when the first expression is **false**, when it is **true**, and when it is **else**.

\[(\text{cond} \ [\text{false} \ldots] [\text{exp1} \ \text{exp2}] \ldots) \Rightarrow (\text{cond} \ [\text{exp1} \ \text{exp2}] \ldots).\]

\[(\text{cond} \ [\text{true} \ \text{exp}] \ldots) \Rightarrow \text{exp}.\]

\[(\text{cond} \ [\text{else} \ \text{exp}]) \Rightarrow \text{exp}.\]
Example:

```
(define n 5)
(cond [(even? n) "even"] [(odd? n) "odd"])
⇒ (cond [(even? 5) "even"] [(odd? n) "odd"])
⇒ (cond [false "even"] [(odd? n) "odd"])
⇒ (cond [(odd? n) "odd"])
⇒ (cond [(odd? 5) "odd"])
⇒ (cond [true "odd"])
⇒ "odd"
```
(define (check-divide n)
 (cond [(zero? n) "Undefined"] [else (/ 1 n)]))

(check-divide 0)
⇒ (cond [(zero? 0) "Undefined"] [else (/ 1 0)])
⇒ (cond [true "Undefined"] [else (/ 1 0)])
⇒ "Undefined"
Nested conditionals

A museum offers free admission for people who arrive after 5pm. Otherwise, the cost of admission is based on a person’s age: age 10 and under are charged $5 and everyone else is charged $10.

Write a function `admission` that consumes two parameters: a Boolean value, `after5?`, and positive integer, `age`, and produces the associated admission cost.
;; admission: Bool Nat → Nat

(define (admission after5? age)
 (cond
 [after5? 0]
 [else
 (cond
 [(<= age 10) 5]
 [(> age 10) 10]])))
Flattening a nested conditional

(define (admission after5? age)
 (cond [after5? 0]
 [(and (not after5?) (<= age 10)) 5]
 [(and (not after5?) (> age 10)) 10]))

(define (admission after5? age)
 (cond [after5? 0]
 [(<= age 10) 5]
 [else 10])))
Conditional expressions can be used like any other expressions:

```
(define (add1-if-even n)
  (+ n
     (cond
      [(even? n) 1]
      [else 0]))
)
```

```
(or (= x 0)
  (cond
   [(positive? x) (> x 100)]
   [else (< x -100)]))
```
Design recipe modifications

When we add to the language, we adjust the design recipe.

We add new steps and modify old steps.

If we don’t mention a step, it is because it has not changed. It does not mean that it is no longer needed!

New step: data analysis

Modified steps: examples, tests
Design recipe modifications

Data analysis: figure out the different cases (possible outcomes). Determine the inputs that lead to each case. (*This is a “thinking” step. There is nothing to write up.*)

Examples/Tests: check interiors of intervals and endpoints.

Definition:

- Choose an ordering of the cases.
- Determine questions to distinguish between cases.
- Develop each question-answer pair one at a time.
Revisiting charges-for

Data analysis:

- outcomes: zero charge or charged per minute over free limit
- intervals: minutes below or above free limit
- question: compare minutes to free limit

Examples/Tests:

- minutes below free limit
- minutes above free limit
- minutes equal to free limit
(define (charges-for minutes freelimit rate)
 (cond
 [(< minutes freelimit) 0]
 [(>= minutes freelimit) (* (- minutes freelimit) rate)]))

(define (cell-bill day eve)
 (+ (charges-for day day-free day-rate)
 (charges-for eve eve-free eve-rate)))
Bonus mark example

`bonus` determines bonus marks based on the difference between the sum of the first three assignments and the sum of the last three assignments.

`bonus` consumes the difference and produces the bonus:

- zero if there was no increase
- the difference itself for an increase of up to 100
- double the difference for an increase of 100 or more
For a difference \textbf{diff}, the cases for a bonus are 0, \textbf{diff}, and \((\ast 2 \text{ diff})\).

Here are in the intervals for each case:

\begin{center}
\begin{tikzpicture}
\draw[->] (-2,0) -- (2,0);
\draw (-1,0.1) -- (-1,-0.1) node[below] {0};
\draw (1,0.1) -- (1,-0.1) node[below] {100};
\end{tikzpicture}
\end{center}

Examples/Tests: -50, 0, 50, 100, 125
;;; bonus: Num → Num

(define (bonus diff)
 (cond [(and (<= 0 diff) (< diff 100)) diff]
 [(<= 100 diff) (* 2 diff)]
 [(< diff 0) 0]))

Nicer ordering:

(define (bonus diff)
 (cond [(< diff 0) 0]
 [(< diff 100) diff]
 [else (* 2 diff)]))
Testing conditional expressions

Include at least one test for each answer, to exercise the code in each answer.

Ensure that each test is simple and direct, targeted to a particular purpose.

The purpose of each test should be clear.

Include tests at boundaries as well.

Unused code is highlighted.
Testing bonus marks

(define (bonus diff)
 (cond
 [(< diff 0) 0]
 [(< diff 100) diff]
 [else (* 2 diff)])
;; Tests for bonus
(check-expect (bonus −50) 0)
(check-expect (bonus 0) 0)
(check-expect (bonus 50) 50)
(check-expect (bonus 100) 200)
(check-expect (bonus 150) 300)
Testing Boolean expressions

For **and**: one test case that produces **true** and one test case for each way of producing **false**.

For **or**: one test case that produces **false** and one test case for each way of producing **true**.

```
(and (>= (string-length str) 3)
     (string=? "cat" (substring str 0 3)))
```

"catch" (length at least three, starts with "cat"),
"at" (length less than three),
"dine" (length at least three, doesn’t start with "cat").
Black-box tests and white-box tests

Black-box tests: based on different cases for what is consumed and produced, not on details of code. Examples should be chosen from black-box tests.

White-box tests: exercise all of the code, including

- at least each line of code (including thorough testing of Boolean expressions), and
- each way that a question of a `cond` can be made `true`.

Use both: black-box before coding, white-box after coding.
Boolean tests

The textbook writes tests in this fashion:

\((\equiv (\text{bonus} - 50) 0) \)

You can visually check these tests by looking for \textit{trues}.

These tests work outside of the teaching languages.

We will continue to use \texttt{check-expect} and \texttt{check-within} as previously described.
Substring checking

cat-start-or-end? asks if a string starts or ends with "cat".

Possible outcomes: true and false.

Inputs leading to true: starts with "cat", ends with "cat", starts and ends with "cat".

Questions to ask:
Does the string start with "cat"?
Does the string end with "cat"?
Developing predicates

(define (cat-start? s)
 (string=? "cat" (substring s 0 3)))

(define (cat-end? s)
 (string=? "cat" (substring s (− (string-length s) 3)))))

(define (too-short? s)
 (> 3 (string-length s)))
Refined data analysis for `cat-start-or-end?`:

- Too short to contain "cat": produces **false**.
- Starts with "cat": produces **true**.
- Ends with "cat": produces **true**.
- Long enough but doesn’t start or end with "cat": produces **false**.

Examples: "me", "caterpillar", "polecat", and "no cat here".
(define (cat-start-or-end? s)
 (cond
 [(too-short? s) false]
 [(cat-start? s) true]
 [(cat-end? s) true]
 [else false]))

;; Tests for cat-start-or-end?
(check-expect (cat-start-or-end? "me") false)
(check-expect (cat-start-or-end? "caterpillar") true)
(check-expect (cat-start-or-end? "polecat") true)
(check-expect (cat-start-or-end? "no cat here") false)
The data type Symbol (Sym)

Racket allows one to define and use **symbols** with meaning to us (not to Racket).

Symbols have a special marker to indicate that they are not function names or strings.

Syntax rule: a **symbol** starts with a single quote ‘ followed by something obeying the rules for identifiers.

The symbol 'blue is a value just like 6, but it is more limited computationally.
Uses:

- A programmer can avoid using numbers or strings to represent names of colours, or of planets, or of types of music.

- Symbols can be compared using the function symbol=?.

```
(define mysymbol 'blue)
(symbol=? mysymbol 'red) ⇒ false
```

Limitations:

No other comparisons or computations possible.
Symbols versus strings

Strings are **compound** data, as a string is a sequence of characters.

Symbols are **atomic** (indivisible), like numbers.

Comparing two symbols is more efficient than comparing two strings.

Symbols can’t have spaces in them.

There are more built-in functions for strings.
When to use symbols vs. strings

Symbols:

- the number of labels needed (e.g. colours) is a small, fixed number, and
- the only computation needed is comparing labels for equality.

Strings:

- the set of values is more varied, or
- more computation is needed (e.g. comparison in alphabetic order).
Mixed data

Sometimes a function will consume one of several types of data, or will produce one of several types of data.

;; check-divide: Num → (anyof Str Num)
(define (check-divide n)
 (cond [(zero? n) "Undefined"]
 [else (/ 1 n)]))

Use the anyof notation for mixed data.
Generalized even

gen-even? consumes an integer, a symbol, or a string, producing true if the input is 'even, "even", or an even integer, and false otherwise.

What is the contract?

How many examples and tests are needed to cover all cases?
A function that consumes mixed data contains a `cond` with one question for each type of data.

Racket provides predicates to identify data types, such as `number?` and `symbol?`.

```racket
(define (gen-even? arg)
  (cond
    [(integer? arg) . . . ]
    [(symbol? arg) . . . ]
    [(string? arg) . . . ]))
```
Completing generalized even

(define (gen-even? info)
 (cond
 [(integer? info)
 (cond [(even? info) true] [else false])]
 [(symbol? info)
 (cond [(symbol=? info 'even) true] [else false])]
 [(string? info)
 (cond [(string=? info "even") true] [else false])]))
(define (gen-even? info)
 (cond
 [(integer? info) (even? info)]
 [(symbol? info) (symbol=? info 'even)]
 [(string? info) (string=? info "even")]))
General equality testing

There are equality predicates for each type: e.g. $=, \text{string}=?, \text{symbol}=?$. The predicate equal? can be used to test the equality of two values which may or may not be of the same type.

equal? works for all types of data we have encountered so far (except inexact numbers), and most types we will encounter in the future.
Generalized even using equal?

Using `equal?` we can eliminate checking if the input is a string or a symbol.

```scheme
(define (gen-even? info)
  (cond
    [(integer? info) (even? info)]
    [(or (equal? info 'even) (equal? info "even")) true]
    [else false]))
```
Additions to syntax

Syntax rule: an expression can be:

• a value,

• a single constant,

• a function application,

• a conditional expression, or

• a Boolean expression.

Recall: A value is a number, a symbol, a string, or a Boolean value. A constant is a named value.
Design recipe for conditional functions

1. **Data analysis.** Figure out outcomes and inputs leading to each outcome. Influences examples, body, and tests. *(Not included in submission.)*

2. **Purpose.**

3. **Contract, including requirements.**

4. **Examples.** Check data for a few different situations.

5. **Definition.** Order the cases. Determine questions. Develop each question-answer pair.

6. **Tests.** Include at least one test for each answer.
Goals of this module

You should be comfortable with these terms: Boolean value, Boolean function, comparison, predicate, compound, atomic.

You should be able to perform and combine comparisons to test complex conditions on numbers.

You should be able to trace programs using the substitution rules for and, or, and cond.

You should understand the syntax and use of a conditional expression.
You should use data analysis in the design recipe, and both black-box and white-box testing.

You should be able to write programs using symbols, strings, and mixed data, and know when to use symbols and when to use strings.

You should understand the \texttt{(anyof \ldots)} notation and be able to use it in your own code.