
Module 4: Making Decisions

1 CS 115 Module 4, Section 1: Predicates

What does “<” mean?

Consider the expression “x < 5”.

In math class, it tells us something about x .
We might combine the state “x < 5” with the statements “x is even” and “x is a perfect
square” to conclude “x is 4”.

In Racket, “<” means something different. A variable such as x already has a value.

2 CS 115 Module 4, Section 1: Predicates

What does “<” mean?

Suppose I define a variable:
(define x 10)

Now I create a Racket expression as close to “x > 5” as possible:
(> x 5)

This is asking “is this true?”
The statement “x > 5” can only be true or false. Which one?

If we evaluate (> x 5), we substitute in the value of the constant, so our expression becomes
(> 10 5).
Since it is true that 10 > 5, the statement evaluates to #true.

On the other hand, if I define the variable:
(define y 2)

Now (> y 5) => (> 2 5) => #false since it is not true that 2 > 5.

3 CS 115 Module 4, Section 1: Predicates

Booleans (Bool)

<, >, <=, >=, =, and equal? are new functions, each of which returns a Boolean value (Bool).

(< 4 6)←→ 4 < 6

(> 4 6)←→ 4 > 6

(= 5 7)←→ 5 = 7

(>= 5 5)←→ 5 ≥ 5

(<= 5 5)←→ 5 ≤ 5

Each returns #true or #false. These are the only values a Bool may take.

4 CS 115 Module 4, Section 1: Predicates

Predicates

A function which returns a Bool is called a predicate. For many predicates in Racket, the
name ends with ?.

E
xe

rc
is
e

Figure out how to use each predicate in DrRacket.
Be sure you understand when each returns #true and when it returns #false.

1 >

2 even?

3 string>=?

4 =

5 equal?

5 CS 115 Module 4, Section 1: Predicates

Who cares?!? Conditionals

−1 0 1 2

−1

0

1

2 A sin-squared window, used in signal
processing, can be described by the following
piecewise function:

f (x) =

0 for x < 0

1 for x ≥ 1

sin2(xπ/2) for 0 ≤ x < 1

Racket gives us an easy way to design such
things in a special form called cond.

7 CS 115 Module 4, Section 2: Conditional expressions

Using cond to describe cases

f (x) =

0 for x < 0

1 for x ≥ 1

sin2(xπ/2) for 0 ≤ x < 1

(define (ssqw x)
(cond
[(< x 0) 0]

[(>= x 1) 1]

[(< x 1) (sqr (sin (* x pi 0.5)))]))

cond is a special form, not a function. We deal with it in a special way.
In particular, do not evaluate its arguments until necessary.

Each argument of cond is a pair of square brackets around a pair of expressions:
[question answer].

8 CS 115 Module 4, Section 2: Conditional expressions

Evaluating a cond statement

How do we evaluate a cond?
Informally, evaluate a cond by considering
the question/answer pairs in order, top to
bottom. When considering a
question/answer pair, evaluate the
question. If the question evaluates to
#true, the whole cond returns the answer.

(define (ssqw x)
(cond
[(< x 0) 0]

[(>= x 1) 1]

[(< x 1) (sqr (sin (* x pi 0.5)))]))

For example consider, (ssqw 4).
=> (cond [(< 4 0) 0]

[(>= 4 1) 1]

[(< 4 1) (sqr (sin (* 4 pi 0.5)))])

Evaluate (< 4 0). This is #false. So look at the next clause.
Evaluate (>= 4 1). This is #true, so the expression evaluates to the answer, which is 1.
=> 1

9 CS 115 Module 4, Section 2: Conditional expressions

Evaluating a cond statement
E
xe

rc
is
e

Given the definition:
(define (foo x)
(cond [(odd? x) "odd"]

[(= 2 (remainder x 10)) "strange"]

[(> x 100) "big"]

[(even? x) "even"]))

First evaluate the expression by hand:
(foo 102)

Then run the code to check your answer.

10 CS 115 Module 4, Section 2: Conditional expressions

Problem solving with cond

An example to remind us of the syntax of cond:
(define (ssqw x)
(cond
[(< x 0) 0]

[(>= x 1) 1]

[(< x 1) (sqr (sin (* x pi 0.5)))]))

E
xe

rc
is
e

Use cond to write a function (absolute-value n) which returns |n|.
(There is a built-in function abs which does this, but don’t use it now.)

Consider that one way to define absolute value is as follows:

a(n) =

{
−n if n < 0

n if n ≥ 0

11 CS 115 Module 4, Section 2: Conditional expressions

No satisfied questions

What happens if none of the questions evaluate to #true?
(define (absolute-value n)
(cond
[(> n 0) n]

[(< n 0) (- n)]))

An error occurs if we try to run (absolute-value 0)

This can be helpful — if we try to consider all the possibilities, but we miss one, testing may
raise this error. Then we can fix it.
But sometimes we want to only describe some conditions, and do something different if none
of them are satisfied.

12 CS 115 Module 4, Section 3: else

else

We could use a question which always evaluates to #true:

It’s always the case that 3 < 7:
(define (absolute-value n)
(cond
[(> n 0) n]

[(< 3 7) (- n)]))

Even simpler: #true is always #true:
(define (absolute-value n)
(cond
[(> n 0) n]

[#true (- n)]))

Remember: the question/answer pairs are considered in order, top to bottom, and it stops as
soon as it finds a question which evaluates to #true.
If no question evaluates to #true until it gets to (< 3 7), that code will run.

13 CS 115 Module 4, Section 3: else

else

This is useful sufficiently frequently that there is special keyword for it: else.
(define (absolute-value n)
(cond
[(> n 0) n]

[else (- n)]))

14 CS 115 Module 4, Section 3: else

E
xe

rc
is
e

Figure out what you think the following program will display.
Then run it in Racket to check your understanding.
(define (waldo x)
(cond
[(even? x) "even"]
[#true "neither even nor odd"]
[(odd? x) "odd"]
))

(waldo 4)

(waldo 3)

15 CS 115 Module 4, Section 3: else

Tracing cond

Recall we are imagining interpreting our programs as a series of substitutions, called a trace.
How do we formally trace cond?
The general form of a conditional is
(cond
[question1 answer1]

[question2 answer2]

...

[questionk answerk])

To evaluate the conditional, evaluate question1, then perform the following substitutions:

(cond [#false exp0][exp1 exp2]...) => (cond [exp1 exp2]...)

(cond [#true exp0][exp1 exp2]...) => exp0

(cond [else exp0]) => exp0

17 CS 115 Module 4, Section 4: Tracing cond

Tracing cond example

(cond [#false exp0][exp1 exp2]...) => (cond [exp1 exp2]...)

(cond [#true exp0][exp1 exp2]...) => exp0

(cond [else exp0]) => exp0

(define (ssqw x) ...)

(ssqw 0)

=> (cond [(< 0 0) 0] [(>= 0 1) 1] [(< 0 1) (sqr (sin (* 0 pi 0.5)))])

=> (cond [#false 0] [(>= 0 1) 1] [(< 0 1) (sqr (sin (* 0 pi 0.5)))])

=> (cond [(>= 0 1) 1] [(< 0 1) (sqr (sin (* 0 pi 0.5)))])

=> (cond [#false 1] [(< 0 1) (sqr (sin (* 0 pi 0.5)))])

=> (cond [(< 0 1) (sqr (sin (* 0 pi 0.5)))])

=> (cond [#true (sqr (sin (* 0 pi 0.5)))])

=> (sqr (sin (* 0 pi 0.5)))

=> (sqr (sin 0))

=> (sqr 0)

=> 0

Tracing cond

(define (qux a b)
(cond
[(= a b) 42]

[(> a (+ 3 b)) (* a b)]

[(> a b) (- b a)]

[else -42]))

(qux 5 4)

E
x. Perform a complete trace of this program.

Verify your answer by comparing to the computer.

19 CS 115 Module 4, Section 4: Tracing cond

Testing cond

You should write tests:

so each question is evaluated to #true at least once, to verify each answer is tested.

to test boundaries; it is easy to get “off-by-one” errors!

Suppose I wanted a function which returns 0 for integers x < 0, 1 for integers 0 ≤ x ≤ 10, and
2 for other integers. What should I test?
I should check boundaries (−1, 0, 1) and (10, 11), some other negative number, and some
larger number.

;; (categorize n) return 0 for negative,

;; 1 for non-negative <= 10, 2

otherwise.

(define (categorize n)
(cond
[(< n 0) 0]

[(<= n 10) 1]

[else 2]))

;; Tests:

(check-expect (categorize -5) 0)

(check-expect (categorize -1) 0)

(check-expect (categorize 1) 1)

(check-expect (categorize 10) 1)

(check-expect (categorize 11) 2)

(check-expect (categorize 50) 2)

(check-expect (categorize 0) 1)

20 CS 115 Module 4, Section 5: Testing using Booleans

Conditionals can be very useful in combination with map

;; (fix-limit val) replace val with 20 if it is greater

;; than 20, and with 10 if it is lower than 10.

;; fix-limit: Num -> Num

;; Example:

(check-expect (fix-limit 5) 10)

(define (fix-limit val)
(cond [(> val 20) 20]

[(< val 10) 10]

[else val]))

;; (fix-list M) Replace each value in M with 20 if it is greater

;; than 20, and with 10 if it is lower than 10.

;; fix-list: (listof Num) -> (listof Num)

;; Example:

(check-expect (fix-list (list 8 12 18 22)) (list 10 12 18 20))

(define (fix-list M)
(map fix-limit M))

Conditionals can be very useful in combination with map

;; (fix-limit val) replace val with 20 if it is greater

;; than 20, and with 10 if it is lower than 10.

(define (fix-limit val)
(cond [(> val 20) 20]

[(< val 10) 10]

[else val]))

;; (fix-list M) Replace each value in M with 20 if it is greater

;; than 20, and with 10 if it is lower than 10.

(define (fix-list M)
(map fix-limit M))

E
xe

rc
is
e

Using cond and map, write a function neg-odd that consumes a (listof Nat). The function
returns a (listof Int) where all odd numbers are made negative, and all even numbers
made positive.
(check-expect (neg-odd (list 2 5 8 11 14 17)) (list 2 -5 8 -11 14 -17))

22 CS 115 Module 4, Section 5: Testing using Booleans

and now for something completely different

We combine predicates using the special forms and, or, and the function not. These all
consume and return Bool values.

and returns #false if at least one of its arguments is #false, and #true otherwise.

or returns #true if at least one of its arguments is #true and #false otherwise.

not returns #true if its argument is #false, and #false if its argument is #true.

A few examples:

(and (> 5 4) (> 7 2)) => #true

(or (>= 5 4) (> 7 2)) => #true

(and (>= 5 5) (<= 7 2) (> 5 1)) => #false

(or (> 4 5) (> 2 7) (< 9 4)) => #false

(not (= 5 4)) => #true

(and #true (< 3 7) (>= 9 1)) => #true
E
xe

rc
is
e

Write a function that consumes a Num, and
returns

"big" if 80 < x ≤ 100,

"small" if 0 < x ≤ 80,

"invalid" otherwise.

Both or and and require at least two arguments, but may have more.

An important subtlety interpreting and and or: short-circuiting

and and or are not functions. They are special forms. Do not evaluate their arguments until
necessary.
Informally, evaluate the arguments one by one, and stop as soon as possible.

For example:
(define (baz x)
(and (not (= 0 x))

(> 0 (cos (/ 1 x)))))

If I run (baz 0), attempting to evaluate the expression (/ 1 x), would cause a division by zero
error. But when x is zero, the first argument of and is #false, so the second is not evaluated.

25 CS 115 Module 4, Section 6: Combining Predicates

Substitution rules for and

Use the following rules for tracing and:

(and #true exp ...) => (and exp ...)

(and #false exp ...) => #false

(and) => #true

E
xe

rc
is
e Perform a trace of

(and (= 3 3) (> 7 4) (< 7 4) (> 0 (/ 3 0)))

Compare your trace to the solution on the next slide.

26 CS 115 Module 4, Section 6: Combining Predicates

Substitution rules for and

=> (and #true (> 7 4) (< 7 4) (> 0 (/ 3 0)))

=> (and (> 7 4) (< 7 4) (> 0 (/ 3 0)))

=> (and #true (< 7 4) (> 0 (/ 3 0)))

=> (and (< 7 4) (> 0 (/ 3 0)))

=> (and #false (> 0 (/ 3 0)))

=> #false

27 CS 115 Module 4, Section 6: Combining Predicates

Substitution rules for or

Use the following rules for tracing or:

(or #true exp ...) => #true

(or #false exp ...) => (or exp ...)

(or) => #false

E
xe

rc
is
e Perform a trace of

(or (< 7 4) (= 3 3) (> 7 4) (> 0 (/ 3 0)))

Compare your trace to the solution on the next slide.

28 CS 115 Module 4, Section 6: Combining Predicates

Substitution rules for or

=> (or #false (= 3 3) (> 7 4) (> 0 (/ 3 0)))

=> (or (= 3 3) (> 7 4) (> 0 (/ 3 0)))

=> (or #true (> 7 4) (> 0 (/ 3 0)))

=> #true

29 CS 115 Module 4, Section 6: Combining Predicates

Nested Conditionals

A museum offers free admission for people who arrive after 5 pm. Otherwise, the cost of
admission is based on a person’s age: age 10 and under are charged $5 and everyone else is
charged $10.

E
xe

rc
is
e

Complete the function (admission after5? age) that returns the admission cost.
;; admission: Bool Nat -> Num

H
in
t

after5? is a constant that is a Bool.
So it can be directly used as a question in a [question answer] pair in a cond.
(cond

[after5? ...]

30 CS 115 Module 4, Section 6: Combining Predicates

Flattening Nested Conditionals

Sometimes it is desirable to flatten conditionals.
That is, instead of having a cond with another cond inside, we can rework them so they are
multiple clauses of a single cond.
We can take the not of whatever is in the first cond, then and it with the inner cond.
We can often simplify even further. Here is an example:

; cond inside cond

(define (admission
after5? age)

(cond
[after5? 0]

[else
(cond
[(<= age 10) 5]

[else 10]
)

]))

↔

; "and" together 2 conds

(define (admission
after5? age)

(cond
[after5? 0]

[(and
(not after5?)
(<= age 10)) 5]

[else 10]))

↔

; further simplified

(define (admission
after5? age)

(cond
[after5? 0]

[(<= age 10) 5]

[else 10]))

31 CS 115 Module 4, Section 6: Combining Predicates

Flattening Nested Conditionals
E
xe

rc
is
e

Flatten the cond expressions in the following function so there is only one cond with four
[question answer] pairs.
;; (flatten-me x) Say which interval x is in.

;; flatten-me: Nat -> Str

(define (flatten-me x)
(cond [(< x 50)

(cond [(< x 25) "first"]
[else "second"])]

[else
(cond [(< x 75) "third"]

[else "fourth"])]))

32 CS 115 Module 4, Section 6: Combining Predicates

The character datatype Char

There is another datatype, Char, which represents a single character.
Some Char values include #\a, #\4, #\space, #\!

Here are a handful of the most useful functions to use with Char.

Check equality using char=? or equal?
(char=? #\e #\e) => #true

(char=? #\# #\&) => #false

(equal? #\X "X") => #false

(equal? #\7 7) => #false

To check if two Char values are in order:
(char<? #\e #\q) => #true

(char<? #\e #\Q) => #false

...and ignoring uppercase/lowercase:
(char-ci=? #\t #\T) => #true

(char-ci<? #\e #\Q) => #true

Documentation for Char is with that for Str, on the course website.

35 CS 115 Module 4, Section 7: Strings as lists of characters

https://www.student.cs.uwaterloo.ca/~cs115/resources/strings.pdf

Strings as lists of characters

In several ways, a Str resembles a list.
Both have a length, and there are ways to get values from both:

(length (list 6 42 7)) => 3

(string-length "hello world!") => 12

(second (list 6 42 7)) => 42

(substring "hello world!" 1 2) => "e"

We can convert a Str to a (listof Char) and back, using string->list and list->string.
(string->list "hi there") => (list #\h #\i #\space #\t #\h #\e #\r #\e)

(list->string (list #\h #\i #\space #\t #\h #\e #\r #\e) => "hi there"

E
xe

rc
is
e Write a function drop-e that converts a Str to a (listof Char), replaces each #\e with a

#*, and converts it back to a Str.
(check-expect (drop-e "hello world, how are you?")

"h*llo world, how ar* you?")

36 CS 115 Module 4, Section 7: Strings as lists of characters

Black-box and white-box testing

“In science, computing, and engineering, a black box is a device. . . which can
be viewed in terms of its inputs and outputs, without any knowledge of its internal
workings.” (Wikipedia)

Black-box testing refers to testing without reference to how the program works. Black-box
tests should be written before you write your code. Your examples are black-box tests.

“A white box is a subsystem whose internals can be viewed but usually not altered.”
(Wikipedia)

White-box testing should exercise every line of code. Design a test to check both sides of every
question in every cond.
These tests are designed after you write your code, by looking at how the code works.

37 CS 115 Module 4, Section 7: Strings as lists of characters

White-Box Testing

Consider writing white box tests for this code:
(define (admission

after5? age)

(cond
[after5? 0]

[(<= age 10) 5]

[else 10]))

For every [question answer] pair we need at least one test where the question is the first that
evaluates to #true Here is one suggestion of tests:

1 (check-expect (admission #true 42) 0) to test the first answer.

2 (check-expect (admission #false 7) 5) to test the second answer.

3 (check-expect (admission #false 42) 10) to test the third answer.

Additional tests are desirable to check edge cases. These help us verify that we did what we
meant to do: did we really mean to use <= instead of < ?
Testing with age of 9, 10, and 11 would cover the edge cases.

38 CS 115 Module 4, Section 7: Strings as lists of characters

Type Predicates and Contracts

You can use the built-in type predicates to tell what type a value is:

(number? 42) => #true

(string? 42) => #false

(char? 42) => #false

(boolean? 42) => #false

Using this we can write a function that can consume values of different types. For example:
;; (any->string x) return a string representing x.

;; any->string: (anyof Str Num Bool) -> Str

;; Examples:

(check-expect (any->string "foo") "foo")

(check-expect (any->string 42) "42")

(check-expect (any->string #true) "#true")

(define (any->string x)
(cond [(string? x) x]

[(boolean? x)
(cond [x "#true"]

[else "#false"])]
[(number? x) (number->string x)]))

40 CS 115 Module 4, Section 7: Strings as lists of characters

Type Predicates and Contracts

Take a close look at the contact for this function:
;; (any->string x) return a string representing x.

;; any->string: (anyof Str Num Bool) -> Str

Where you see (anyof ...), that represents a single parameter, that can have any of the type
in the brackets.

The ability to have parameters with different types is called dynamic typing. Some languages
instead have static typing, where each parameter can have only one type.

Static and dynamic typing have their advantages and disadvantages. But if we are using
dynamic typing, it is important to use the contract to keep track of what the types are!

41 CS 115 Module 4, Section 7: Strings as lists of characters

Type Predicates and Contracts

While Racket does not enforce contracts, we will always assume that contracts are followed.

Never call a function with arguments that violate the contract and requirements. If you
desire to use one of your own helper functions in a way that violates its contract, that
likely means you should modify its contract!

If necessary, you may use anyof in your contract. But first consider if there is a way to
accomplish you goal using a simpler contract. It is usually bad style to write functions that can
consume multiple types (and a bad habit to have if someday you learn a statically-typed
language).

42 CS 115 Module 4, Section 7: Strings as lists of characters

Module summary

Become comfortable using cond expressions, and, or, and not.

Get used to combining these statements with the rest of our tools.

Test these expressions, and know what black-box and white-box testing are.

Make sure you understand short-circuiting in and and or.

Become skillful at tracing code which includes cond, and, and or.

Be able to convert between a Str and a (listof Char).

Further Reading: How to Design Programs, Section 4.

Before we begin the next module, please

Read the Wikipedia entry on Filter (higher order function).

44 CS 115 Module 4, Section 8: Designing conditional functions

https://htdp.org/2019-02-24/part_one.html#%28part._ch~3aintervals-enums%29
https://en.wikipedia.org/wiki/Filter_(higher-order_function)

	Predicates
	Conditional expressions
	else
	Tracing cond
	Testing using Booleans
	Combining Predicates
	Strings as lists of characters
	Designing conditional functions

