Module 6: Recursion
A Collatz sequence is defined as follows: start with any natural number. If the previous term is even, the next term is half the previous term; otherwise, the next term is one more than three times the previous. That is,

\[s_{k+1} = \begin{cases}
\frac{s_k}{2} & \text{if } s_k \text{ is even} \\
3s_k + 1 & \text{otherwise.}
\end{cases} \]

Consider \(s_k = 12 \). This is even, so \(s_{k+1} = s_k/2 = 12/2 = 6 \).

Consider \(s_k = 3 \). This is odd, so \(s_{k+1} = 3s_k + 1 = 3(3) + 1 = 10 \).

Exercise

Write a function \((\text{collatz-next } s_k)\) that consumes a \texttt{Nat} representing an item in a Collatz sequence, and returns the next item in the sequence.

(\text{check-expect (collatz-next 3) 10})

(\text{check-expect (collatz-next 12) 6})
You might notice:

\[
\begin{align*}
(collatz\text{-}next\ 1) & \Rightarrow 4 & (collatz\text{-}next\ 4) & \Rightarrow 2 & (collatz\text{-}next\ 2) & \Rightarrow 1 \\
\text{If the sequence ever reaches 1, it continues } 1, 4, 2, 1, 4, 2, \ldots \text{ forever.}
\end{align*}
\]

Numbers seem to eventually reach 1: 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1

Assume every starting number will eventually reach 1. (Nobody knows for sure.)

Exercise

Write a function \((collatz\text{-}seq\ sk)\) that returns the Collatz sequence starting at \(sk\), until it reaches 1.

\[
\begin{align*}
(collatz\text{-}seq\ 13) & \Rightarrow (\textbf{list} \ 13\ 40\ 20\ 10\ 5\ 16\ 8\ 4\ 2\ 1) \\
(collatz\text{-}seq\ 21) & \Rightarrow (\textbf{list} \ 21\ 64\ 32\ 16\ 8\ 4\ 2\ 1) \\
(collatz\text{-}seq\ 1) & \Rightarrow (\textbf{list} \ 1)
\end{align*}
\]
Clearly this computation is possible, since I can do it by hand. But none of our tools are powerful enough to complete it!

It is not possible to complete this task using and combination of `map`, `filter`, and `foldr`. We need a more powerful tool: `recursion`.
A definition that refers to itself is said to be **recursive**.

Example: The **Peano axioms** which define the natural numbers include:

1. 0 is a natural number.
2. For every natural number \(n \), \(S(n) \) is a natural number.

I can represent 1 as \(S(0) \), 2 as \(S(S(0)) \), 3 as \(S(S(S(0))) \), and so on. \(S(n) \) is called the successor function; it consumes a natural number, and returns the next.
In Racket we may use \((+ n 1)\) to create the successor. (Then \((- n 1)\) gives the predecessor.) A **Data Definition** is a comment that describes a data type. We can define a **Nat** as follows:

\[
;; \text{A Nat is either:}
;; \quad \emptyset \text{ or}
;; \quad (+ r 1) \text{ where } r \text{ is a Nat.}
\]
Consider the function $n! = n \times (n - 1) \times (n - 2) \times \cdots \times 3 \times 2 \times 1$.

For example:

- $3! = 3 \times 2 \times 1 = 6$
- $4! = 4 \times 3 \times 2 \times 1 = 24$

If we add brackets, we see:

4! = 4 \times (3 \times 2 \times 1)

But $3 \times 2 \times 1 = 3!$

So $4! = 4 \times 3!$

It’s like the function has a “smaller version of itself” inside. “Usually”, $n! = n \times (n - 1)!$
A recursive data definition includes two parts:

- a **base case**
- one or more **recursive cases**, defined using the term itself.

Example:

```plaintext
;; A Nat is either:
;; 0 or
;; (+ r 1) where r is a Nat.
```

Recursive functions may follow this structure:

- a **base case** specifies the result for a special value.
- **recursive cases** specify the result in terms of the function itself, closer to the base case.

Example:

```
n! = \begin{cases} 
1 & \text{if } n = 0 \\
 n \times (n-1)! & \text{otherwise.}
\end{cases}
```

```
;; (factorial n) return n!
(define (factorial n)
  (cond [(= n 0) 1]
        [else (* n (factorial (- n 1)))])
)
```

Try out factorial \(\rightarrow\) and see that it works.
One of the ideas of the HtDP textbook is that the form of a program may mirror the form of the data.

A **template** is a general framework which we will complete with specifics. It is a starting point for our implementation.
A template for counting down

Recursive functions may follow this structure:

- a **base case** specifies the result for a special value.
- **recursive cases** specify the result in terms of the function itself, closer to the base case.

From the recursive data definition:

```plaintext
;; A Nat is either:
;; 0 or
;; (+ r 1) where r is a Nat.
```

We can extract a **template** to address the two cases:

```plaintext
;; (nat-template n) a template on n down to 0.
;; nat-template: Nat -> Any
(define (nat-template n)
  (cond [(= n 0) ...]
        [else (... n ... (nat-template (- n 1)) ...)]))
```
A template for counting down

;; (nat-template n) a template on n down to 0.
;; nat-template: Nat -> Any
(define (nat-template n)
 (cond [(= n 0) ...]
 [else (... n ... (nat-template (- n 1)) ...)]))

To use the template follow this approach:

1. Always fill in the **base case(s)** first.
 For this template, what is the answer when (= n 0) ?
 Think: “for what value(s) do I know the answer without doing any work?”
 Test! Make sure it works for the base case!

2. Then fill in the **recursive case(s)**.
 The recursive case must be closer to the base case.
 For this template, the (- n 1) brings us closer to the base.
 Test more!
A template for counting down

;; (nat-template n) a template on n down to 0.
;; nat-template: Nat -> Any
(define (nat-template n)
 (cond
 [(= n 0) ...]
 [else
 (... n ... (nat-template (- n 1)) ...)]))

Exercise

Write a recursive function (sum-to n) that consumes a Nat and returns the sum of all Nat between 0 and n.

(sum-to 4) => (+ 4 3 2 1 0) => 10

Exercise

Complete countdown using recursion. (Hint: use cons.)

;; (countdown n) return a list of the natural numbers from n down to 0.
;; countdown: Nat -> (listof Nat)
;; Examples:
(check-expect (countdown 3) (cons 3 (cons 2 (cons 1 (cons 0 '())))))
(check-expect (countdown 5) (list 5 4 3 2 1 0))
We may make a data definition for numbers greater than any value, for example, 7:

```
;; A Nat7 is either:
;;    7 or
;;    (+ r 1) where r is a Nat7.
```

From this we could made a template for a recursive function on Nat7:

```
;; (nat7-template n) a template n down to 7.
;; nat-template: Nat7 -> Any
(define (nat7-template n)
    (cond [(= n 7) ...]
          [else (... n ... (nat-template (- n 1)) ...)]))
```
A template for counting down: stopping away from zero

Doing this for a fixed base value (0 or 7) is rather limiting. We can generalize, providing the base value as a parameter. The data definition becomes:

A template for counting down: stopping away from zero

Doing this for a fixed base value (0 or 7) is rather limiting. We can generalize, providing the base value as a parameter. The data definition becomes:

An integer greater than or equal to \(b \) is either

- \(b \) or
- 1 more than an integer greater than or equal to \(b \).

This gives the template:

\[
\text{;; (int-b-template \(n \) \(b \)) a template \(n \) down to \(b \).}
\text{;; int-b-template: Int Int -> Any}
\text{;; Requires: \(n \) >= \(b \)}
\text{(define (int-b-template \(n \) \(b \))}
\text{(cond [(= \(n \) \(b \)) ...]}
\text{[else}
\text{(... \(n \) ... (int-b-template (- \(n \) 1) \(b \) ...)])])}
\]

Note here the parameter \(b \) is passed to the recursive call, unchanged. Only \(n \) changes.
Write a recursive function `(sum-between n b)` than consumes two Nat, with \(n \geq b \), and returns the sum of all Nat between \(b \) and \(n \).

\[
(sum-between 5 3) \Rightarrow (+ 5 4 3) \Rightarrow 12
\]

Remember: **always fill in the base case first.**

Complete countdown-to using recursion.

\[
<countdown-to n b> \text{ return a list of Int from } n \text{ down to } b. \\
<countdown-to: Int Int -> (listof Int) \\
Examples:
(check-expect (countdown-to 2 0) (cons 2 (cons 1 (cons 0 '()))))
(check-expect (countdown-to 5 2) (list 5 4 3 2))
\]
A template for counting up

Similarly, we can make a template for counting up. Start with a new data definition:

An **integer less than or equal to** t is either

- t or
- 1 less than an **integer less than or equal to** t.

The recursive call must get closer to the base. So increase the parameter with $(+ n 1)$:

```scheme
;; (nat-upto-template n t) a template on n up to t.
;; nat-upto-template: Nat -> Any
;; Requires: n <= t

(define (nat-upto-template n t)
  (cond [(= n t) ...]
        [else (... n ... (nat-upto-template (+ n 1) t) ...)]))
```
A template for counting up

;; (nat-upto-template n t) a template on n up to t.
;; nat-upto-template: Nat -> Any
;; Requires: n <= t

(define (nat-upto-template n t)
 (cond [(= n t) ...]
 [else (... n ... (nat-upto-template (+ n 1) t) ...)]))

Exercise

Use recursion to complete the function list-cubes.

;; (list-cubes b t) return the list of cubes from b*b*b up to t*t*t.
;; list-cubes: Nat Nat -> (listof Nat)
;; Examples:
(check-expect (list-cubes 2 5) (list 8 27 64 125))
We can count up (or down) by numbers other than 1. Simply replace \((+ \ n \ 1)\) with \((+ \ n \ k)\) to count up by \(k\), or replace \((- \ n \ 1)\) with \((- \ n \ k)\) to count down by \(k\).

Exercise

Write a function \((\text{countdown-by top step)}\) that returns a list of \(\text{Nat}\) so the first is \(\text{top}\), the next is \(\text{step}\) less, and so on, until the next one would be zero or less.

\[
\begin{align*}
(\text{countdown-by 15 3}) &\Rightarrow (\text{list 15 12 9 6 3}) \\
(\text{countdown-by 14 3}) &\Rightarrow (\text{list 14 11 8 5 2})
\end{align*}
\]

Exercise

Write a recursive function \((\text{step-sqr-sum-between lo hi step)}\), that returns the sum of squares of the numbers starting at \(\text{lo}\) and ending before \(\text{hi}\), spaced by \(\text{step}\).

That is, duplicate the following function:

\[
\begin{align*}
(\text{define (step-sqr-sum-between lo hi step)} &\Rightarrow \\
(foldr + 0 (map sqrt (range lo hi step))))
\end{align*}
\]
Lists are defined recursively

It is very easy to add an item at the front of a list:

\((\text{cons} \ 42 \ (\text{list} \ 6 \ 7)) \Rightarrow (\text{list} \ 42 \ 6 \ 7) \)

It is slightly more tricky to add at the back of the list:

\((\text{foldr} \ \text{cons} \ (\text{list} \ 42) \ (\text{list} \ 6 \ 7)) \Rightarrow (\text{list} \ 6 \ 7 \ 42) \)
\((\text{append} \ (\text{list} \ 6 \ 7) \ (\text{list} \ 42)) \Rightarrow (\text{list} \ 6 \ 7 \ 42) \)

But there is no built-in, super-easy way to do it. Why?
Answer: in Racket lists are actually defined recursively.

A (listof Int) is either

- '()', or
- (cons v L) where v is an Int and L is a (listof Int).

Recall '()' is a special symbol: the empty list.

\((\text{list} \ 3) \leftrightarrow (\text{cons} \ 3 \ '()') \)
\((\text{list} \ 6 \ 7) \leftrightarrow (\text{cons} \ 6 \ (\text{cons} \ 7 \ '()')) \)
A template for functions that process lists

The data definition for any list will resemble that of a `(listof Int)`:

A `(listof Int)` is either

- '()', or
- `(cons v L)` where `v` is an `Int` and `L` is a `(listof Int)`.

Recall that recursive functions may follow this structure:

- a **base case** specifies the result for a special value.
- **recursive cases** specify the result in terms of the function itself, closer to the base case.

The base case is the empty list, '(). We can get closer to it using `rest`. So the template is:

```scheme
;; (listof-int-template L) a template on L.
;; listof-int-template: (listof Int) -> Any
(define (listof-int-template L)
  (cond [(equal? L '()) ...]
        [else (... (first L) ... (listof-int-template (rest L)) ...)])
```
A shortcut

It is so common to need to check for the empty list, there is a special predicate `empty?`. `empty?` consumes one value, and returns `#true` if its argument is `'(())`, and `#false` otherwise.

`(empty? L)` and `(equal? L '(()))` are exactly equivalent.

The template may then be written:

```scheme
;; (listof-int-template L) a template on L.
;; listof-int-template: (listof Int) -> Any
(define (listof-int-template L)
  (cond [(empty? L) ...]
        [else (... (first L) ... (listof-int-template (rest L)) ...)]))
```
The template previously applied specifically to \((\text{listof } \text{Int})\).

A generic template can be used for any type \(x\). You do not need to write a template for each specific type.

\begin{verbatim}
;; (listof-x-template L) a template on L.
;; listof-x-template: (listof X) -> Any
(define (listof-x-template L)
 (cond [(empty? L) ...]
 [else (... (first L) ... (listof-x-template (rest L)) ...)])
\end{verbatim}

You will use this template many times — for every function you write that recurses on lists!
Write a recursive function `sum` that consumes a `(listof Int)` and returns the sum of all the values in the list.

```
(sum (list 6 7 42)) => 55
```

That is, use recursion to duplicate the following function:

```
(define (sum L) (foldr + 0 L))
```

Write a recursive function `keep-evens` that consumes a `(listof Int)` and returns the list of even values.

```
(define (keep-evens L) (filter even? L))
```

That is, use recursion to duplicate the following function:
Our functions can do work on the variables as we go. They can:

- Keep only some values (like `filter`)
- Change values (like `map`)
- Combine value (like `foldr`)
- and more....

```
;; (even-squares-between hi lo) return the list of the squares
;; of the even numbers between lo and hi.
;; even-squares-between: Nat Nat -> Nat

(define (even-squares-between hi lo)
  (cond [(<= hi lo) '()]
    [(even? hi) (cons (sqr hi) (even-squares-between (- hi 1) lo))]
    [else (even-squares-between (- hi 1) lo)]))
```

This does the same thing:

```
(define (even-squares-btw hi lo)
  (map sqr (filter even? (range hi lo -1))))
```
Recursion can do anything

Any code we wrote using \texttt{map}, \texttt{filter}, or \texttt{foldr} can we written using only recursion. It will often be harder to write, and almost certainly harder to read. It is particularly important to write the design recipe!
Example: the same thing three ways

Higher order functions:

```
(define (even-squares-btw hi lo)
  (map sqr (filter even? (range hi lo -1))))
```

A single `foldr`:

```
(define (even-squares-foldr hi lo)
  (foldr (lambda (a b)
           (cond [(even? a) (cons (sqr a) b)]
                 [else b]))
         ()
         (range hi lo -1)))
```

Using recursion only:

```
(define (even-squares-between-between hi lo)
  (cond [(<= hi lo) '()]
        [(even? hi) (cons (sqr hi) (even-squares-between-between (- hi 1) lo))]
        [else (even-squares-between-between (- hi 1) lo)]))
```
The same thing three ways

Higher order functions:

```scheme
(define (muddle-down hi lo)
  (map (lambda (x) (* x 2))
    (filter (lambda (y) (= 1 (remainder y 3)))
      (range hi lo -1))))
```

A single foldr:

```scheme
(define (muddle-down-foldr hi lo)
  (foldr (lambda (a b)
           (cond [ (= 1 (remainder a 3)) (cons (* a 2) b)]
                [else b]))
          ()
        (range hi lo -1)))
```

Ex.

Duplicate the behaviour of `muddle-down` and `muddle-down-foldr` using recursion only.
What is the largest value in an empty list? Is it zero? ∞? $-\infty$?

The question does not make sense. Some computations only makes sense on a nonempty list.

For such a function, add a Requires section to the design recipe:

```scheme
;; (list-max L) return the greatest value in L.
;; list-max: (listof Int) -> Int
;; Requires: L is not empty.
;; Example:
(check-expect (list-max (list 3 7 4)) 7)
(check-expect (list-max (list -3 -7 -4)) -3)
```
If we require that our input be a nonempty list, we can’t use the empty list as a base case—we should never receive it as input!

Instead: `(empty? (rest L))` will return `#true` when `L` has just one value left in it. This is a perfect base case for our `list-max` function.

Exercise

Write a recursive function `list-max` that consumes a nonempty `(listof Int)` and returns the largest value in the list.
You now have tools powerful enough to solve the problem we started with. A Collatz sequence is defined as follows:

\[s_{k+1} = \begin{cases}
\frac{s_k}{2} & \text{if } s_k \text{ is even} \\
3s_k + 1 & \text{otherwise.}
\end{cases} \]

This does not fit into the templates we encountered. Solving it is a challenge, but possible!

Consider what collatz-seq sk need to do when:

1. sk is 1?
2. sk is an even number?
3. sk is an odd number other than 1?

Write a function (collatz-seq sk) that returns the Collatz sequence starting at sk, until it reaches 1.

(collatz-seq 13) => (list 13 40 20 10 5 16 8 4 2 1)
(collatz-seq 21) => (list 21 64 32 16 8 4 2 1)
(collatz-seq 1) => (list 1)
Be comfortable with the following terms: recursion, base case, recursive case, data definition.

Understand recursive data definitions for Nat and (listof Any).

Understand how to build a recursive template based on a recursive data definition, and be able to use the template to write recursive functions that consume the data type.

Further Reading: *How to Design Programs* Sections 9, 10