Module 6: Recursion
Collatz Sequences

A Collatz sequence is defined as follows: start with any natural number. If the previous term is even, the next term is half the previous term; otherwise, the next term is one more than three times the previous. That is,

\[s_{k+1} = \begin{cases}
\frac{s_k}{2} & \text{if } s_k \text{ is even} \\
3s_k + 1 & \text{otherwise.}
\end{cases} \]

Consider \(s_k = 12 \). This is even, so \(s_{k+1} = \frac{s_k}{2} = 12/2 = 6 \).

Consider \(s_k = 3 \). This is odd, so \(s_{k+1} = 3s_k + 1 = 3(3) + 1 = 10 \).

Write a function \((\text{collatz-next } s_k)\) that consumes a \text{Nat} representing an item in a Collatz sequence, and returns the next item in the sequence.

\(\text{(check-expect (collatz-next 3) 10)} \)
\(\text{(check-expect (collatz-next 12) 6)} \)
You might notice:

\[(\text{collatz-next } 1) \Rightarrow 4 \quad (\text{collatz-next } 4) \Rightarrow 2 \quad (\text{collatz-next } 2) \Rightarrow 1\]

If the sequence ever reaches 1, it continues 1, 4, 2, 1, 4, 2, \ldots forever.

Numbers seem to eventually reach 1: 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1

Assume every starting number will eventually reach 1. (Nobody knows for sure.)

Exercise

Write a function \((\text{collatz-seq sk})\) that returns the Collatz sequence starting at \(sk\), until it reaches 1.

\[
(\text{collatz-seq 13}) \Rightarrow (\text{list} 13 \ 40 \ 20 \ 10 \ 5 \ 16 \ 8 \ 4 \ 2 \ 1)
\]

\[
(\text{collatz-seq 21}) \Rightarrow (\text{list} 21 \ 64 \ 32 \ 16 \ 8 \ 4 \ 2 \ 1)
\]

\[
(\text{collatz-seq 1}) \Rightarrow (\text{list} 1)
\]
Collatz Sequences

Clearly this computation is possible, since I can do it by hand. But none of our tools are powerful enough to complete it!

It is not possible to complete this task using and combination of `map`, `filter`, and `foldr`. We need a more powerful tool: *recursion*.
A definition that refers to itself is said to be **recursive**.

Example: The **Peano axioms** which define the natural numbers include:

1. 0 is a natural number.
2. For every natural number \(n \), \(S(n) \) is a natural number.

I can represent 1 as \(S(0) \), 2 as \(S(S(0)) \), 3 as \(S(S(S(0))) \), and so on. \(S(n) \) is called the successor function; it consumes a natural number, and returns the next.
In Racket we may use (+ n 1) to create the successor. (Then (- n 1) gives the predecessor.) A **Data Definition** is a comment that describes a data type. We can define a **Nat** as follows:

```racket
;; A Nat is either:
;; 0 or
;; (+ r 1) where r is a Nat.
```
Consider the function \(n! = n \times (n - 1) \times (n - 2) \times \cdots \times 3 \times 2 \times 1 \).

For example:

- \(3! = 3 \times 2 \times 1 = 6 \)
- \(4! = 4 \times 3 \times 2 \times 1 = 24 \)

If we add brackets, we see:

\[
4! = 4 \times (3 \times 2 \times 1) \quad \text{But} \quad 3 \times 2 \times 1 = 3! \quad \text{So} \quad 4! = 4 \times 3!
\]

It’s like the function has a “smaller version of itself” inside. “Usually”, \(n! = n \times (n - 1)! \)
A recursive data definition includes two parts:

- a **base case**
- one or more **recursive cases**, defined using the term itself.

Example:

```plaintext
;; A Nat is either:
;; 0 or
;; (+ r 1) where r is a Nat.
```

Recursive functions may follow this structure:

- a **base case** specifies the result for a special value.
- **recursive cases** specify the result in terms of the function itself, closer to the base case.

Example:

```plaintext
n! = \begin{cases} 
1 & \text{if } n = 0 \\
 n \times (n - 1)! & \text{otherwise.} 
\end{cases}
```

```plaintext
;; (factorial n) return n!
(define (factorial n)
  (cond [(= n 0) 1]
        [else (* n (factorial (- n 1)))]))
```

Exercise

Try out `factorial` and see that it works.
One of the ideas of the HtDP textbook is that the form of a program may mirror the form of the data.

A **template** is a general framework which we will complete with specifics. It is a starting point for our implementation.
A template for counting down

Recursive functions may follow this structure:

- a **base case** specifies the result for a special value.
- **recursive cases** specify the result in terms of the function itself, closer to the base case.

From the recursive data definition:

```
;; A Nat is either:
;; 0 or
;; (+ r 1) where r is a Nat.
```

We can extract a **template** to address the two cases:

```
;; (nat-template n) a template on n down to 0.
;; nat-template: Nat -> Any
(define (nat-template n)
  (cond [(= n 0) ...]
    [else (... n ... (nat-template (- n 1)) ...)]))
```
A template for counting down

;;; (nat-template n) a template on n down to 0.
;;; nat-template: Nat -> Any
(define (nat-template n)
 (cond [(= n 0) ...]
 [else (... n ... (nat-template (- n 1)) ...)])
)

To use the template follow this approach:

1. Always fill in the **base case(s)** first.
 For this template, what is the answer when (= n 0) ?
 Think: “for what value(s) do I know the answer without doing any work?”
 Test! Make sure it works for the base case!

2. Then fill in the **recursive case(s)**.
 The recursive case must be closer to the base case.
 For this template, the (- n 1) brings us closer to the base.
 Test more!
A template for counting down

;; (nat-template n) a template on n down to 0.
;; nat-template: Nat -> Any
(define (nat-template n)
 (cond [(= n 0) ...]
 [else (... n ... (nat-template (- n 1)) ...)]))

1. **Base case(s) first.**
2. **Then recursive case(s).**

Exercise

Write a recursive function \((\text{sum-to } n)\) that consumes a \text{Nat} and returns the sum of all \text{Nat} between 0 and \(n\).

\(\text{(sum-to 4)} \Rightarrow (+ 4 3 2 1 0) \Rightarrow 10\)

Exercise

Complete countdown using recursion. (Hint: use \text{cons}.)

;; (countdown n) return a list of the natural numbers from n down to 0.
;; countdown: Nat -> (listof Nat)
;; Examples:
(check-expect (countdown 3) (\textbf{cons} 3 (\textbf{cons} 2 (\textbf{cons} 1 (\textbf{cons} 0 '('))))))
(check-expect (countdown 5) (\textbf{list} 5 4 3 2 1 0))
A template for counting down: stopping away from zero

We may make a data definition for numbers greater than any value, for example, 7:

;; A Nat7 is either:
;; 7 or
;; (+ r 1) where r is a Nat7.

From this we could make a template for a recursive function on Nat7:

;; (nat7-template n) a template n down to 7.
;; nat-template: Nat7 -> Any
(define (nat7-template n)
 (cond [(= n 7) ...]
 [else (... n ... (nat-template (- n 1)) ...)])

15 CS 115 15
A template for counting down: stopping away from zero

Doing this for a fixed base value (0 or 7) is rather limiting. We can generalize, providing the base value as a parameter. The data definition becomes:

An integer greater than or equal to \(b\) is either

- \(b\) or
- 1 more than an integer greater than or equal to \(b\).

This gives the template:

```scheme
;; (int-b-template n b) a template \(n\) down to \(b\).
;; int-b-template: Int Int -> Any
;; Requires: \(n \geq b\)
(define (int-b-template n b)
  (cond [(= n b) ...]
        [else (... n ... (int-b-template (- n 1) b) ...)]))
```

Note here the parameter \(b\) is passed to the recursive call, unchanged. Only \(n\) changes.
;; (int-b-template n b) a template n down to b.
;; int-b-template: Int Int -> Any
;; Requires: n >= b
(define (int-b-template n b)
 (cond [(= n b) ...
 [else (... n ... (int-b-template (- n 1) b) ...)]]))

Exercise
Write a recursive function (sum-between n b) than consumes two Nat, with \(n \geq b \), and returns the sum of all Nat between \(b \) and \(n \).

(sum-between 5 3) => (+ 5 4 3) => 12

Remember: **always fill in the base case first.**

Exercise
Complete countdown-to using recursion.

;; (countdown-to n b) return a list of Int from n down to b.
;; countdown-to: Int Int -> (listof Int)
;; Examples:
(check-expect (countdown-to 2 0) (cons 2 (cons 1 (cons 0 '()))))
(check-expect (countdown-to 5 2) (list 5 4 3 2))
A template for counting up

Similarly, we can make a template for counting up.
Start with a new data definition:

An integer less than or equal to t is either
- t or
- 1 less than an integer less than or equal to t.

The recursive call must get closer to the base. So increase the parameter with $(+ n 1)$:

```
;; (nat-upto-template n t) a template on n up to t.
;; nat-upto-template: Nat -> Any
;; Requires: n <= t

(define (nat-upto-template n t)
  (cond [(= n t) ...]
        [else (... n ... (nat-upto-template (+ n 1) t) ...)]))
```
A template for counting up

;;; (nat-upto-template n t) a template on n up to t.
;;; nat-upto-template: Nat -> Any
;;; Requires: n <= t

(define (nat-upto-template n t)
 (cond [(= n t) ...
 [else (... n ... (nat-upto-template (+ n 1) t) ...)]))

Exercise

Use recursion to complete the function list-cubes.

;;; (list-cubes b t) return the list of cubes from b*b*b up to t*t*t.
;;; list-cubes: Nat Nat -> (listof Nat)
;;; Examples:
(check-expect (list-cubes 2 5) (list 8 27 64 125))
Step counting

We can count up (or down) by numbers other than 1. Simply replace \((+ n 1)\) with \((+ n k)\) to count up by \(k\), or replace \((- n 1)\) with \((- n k)\) to count down by \(k\).

Exercise

Write a function \((\text{countdown-by top step)}\) that returns a list of \(\text{Nat}\) so the first is \(\text{top}\), the next is \(\text{step}\) less, and so on, until the next one would be zero or less.

\[
\begin{align*}
(\text{countdown-by 15 3}) & \Rightarrow (\text{list 15 12 9 6 3}) \\
(\text{countdown-by 14 3}) & \Rightarrow (\text{list 14 11 8 5 2})
\end{align*}
\]

Exercise

Write a recursive function \((\text{step-sqr-sum-between lo hi step)}\), that returns the sum of squares of the numbers starting at \(\text{lo}\) and ending before \(\text{hi}\), spaced by \(\text{step}\).

That is, duplicate the following function:

\[
\begin{align*}
(\text{define \(\text{step-sqr-sum-between lo hi step)}\) & \\
& (\text{foldr + \(0\)} (\text{map sqr (range lo hi step)})))
\end{align*}
\]
Lists are defined recursively

It is very easy to add an item at the front of a list:

```racket
(cons 42 (list 6 7)) ⇒ (list 42 6 7)
```

It is slightly more tricky to add at the back of the list:

- `(foldr cons (list 42) (list 6 7)) ⇒ (list 6 7 42)
- `(append (list 6 7) (list 42)) ⇒ (list 6 7 42)

But there is no built-in, super-easy way to do it. Why?

Answer: in Racket lists are actually defined recursively.

A `(listof Int)` is either

- `'(())`, or
- `(cons v L)` where `v` is an `Int` and `L` is a `(listof Int)`.

Recall `'(())` is a special symbol: the empty list.

```
(list 3) ↔ (cons 3 '(()))
(list 6 7) ↔ (cons 6 (cons 7 '(())))
```
A template for functions that process lists

The data definition for any list will resemble that of a \texttt{(listof Int)}:

\begin{itemize}
\item A \texttt{(listof Int)} is either
\item \texttt{()}, or
\item \texttt{(cons \, v \, L)} where \(v\) is an \texttt{Int} and \(L\) is a \texttt{(listof Int)}.
\end{itemize}

Recall that recursive functions may follow this structure:

\begin{itemize}
\item a \texttt{base case} specifies the result for a special value.
\item \texttt{recursive cases} specify the result in terms of the function itself, closer to the base case.
\end{itemize}

The base case is the empty list, \texttt{()}. We can get closer to it using \texttt{rest}. So the template is:

\begin{verbatim}
;; (listof-int-template L) a template on L.
;; listof-int-template: (listof Int) -> Any
(define (listof-int-template L)
 (cond [(equal? L '()) ...
 [else (... (first L) ... (listof-int-template (rest L)) ...)])
)
\end{verbatim}
A shortcut

It is so common to need to check for the empty list, there is a special predicate `empty?`. `empty?` consumes one value, and returns `#true` if its argument is `'()'`, and `#false` otherwise.

`(empty? L)` and `(equal? L '())` are exactly equivalent.

The template may then be written:

```scheme
;; (listof-int-template L) a template on L.
;; listof-int-template: (listof Int) -> Any
(define (listof-int-template L)
  (cond [(empty? L) ...]
        [else (... (first L) ... (listof-int-template (rest L)) ...)])))
```
The template previously applied specifically to \((\text{listof Int})\).

A generic template can be used for any type \(x\). You do not need to write a template for each specific type.

\[
\begin{align*}
&\text{;; (listof-x-template L) a template on L.} \\
&\text{;; listof-x-template: (listof X) -> Any} \\
&\text{(define (listof-x-template L)} \\
&\text{ (cond [(empty? L) ...]} \\
&\text{ [else} \\
&\text{ (... (first L) ... (listof-x-template (rest L)) ...)]})
\end{align*}
\]

You will use this template many times — for every function you write that recurses on lists!
Write a recursive function \(\text{sum} \) that consumes a \((\text{listof Int})\) and returns the sum of all the values in the list.

\[(\text{sum (list 6 7 42)}) \Rightarrow 55\]

That is, use recursion to duplicate the following function:

\[(\text{define (sum L) (foldr + 0 L)})\]

Exercise

Write a recursive function \(\text{keep-evens} \) that consumes a \((\text{listof Int})\) and returns the list of even values.

That is, use recursion to duplicate the following function:

\[(\text{define (keep-evens L) (filter even? L)})\]
Doing work on the way

Our functions can do work on the variables as we go. They can:

- Keep only some values (like \texttt{filter})
- Change values (like \texttt{map})
- Combine value (like \texttt{foldr})
- and more....

;;; \texttt{(even-squares-between hi lo)} return the list of the squares
;;; of the even numbers between \texttt{lo} and \texttt{hi}.
;;; \texttt{even-squares-between}: \texttt{Nat Nat -> Nat}

\begin{verbatim}
(define (even-squares-between hi lo)
 (cond [(
 (≤ hi lo) '()]
 [(even? hi) (cons (sqr hi) (even-squares-between (- hi 1) lo))]
 [else (even-squares-between (- hi 1) lo)])
)
\end{verbatim}

This does the same thing: \begin{verbatim}(define (even-squares-btw hi lo)
 (map sqr (filter even? (range hi lo -1))))\end{verbatim}
Recursion can do anything

Any code we wrote using \textit{map}, \textit{filter}, or \textit{foldr} can we written using only recursion. It will often be harder to write, and almost certainly harder to read. It is particularly important to write the design recipe!
Example: the same thing three ways

Higher order functions:

\[
\begin{align*}
\text{define} & \quad \text{(even-squares-btw hi lo)} \\
& \quad \text{(map sqr (filter even? (range hi lo -1)))}
\end{align*}
\]

\[
\uparrow
\]

A single \texttt{foldr}:

\[
\begin{align*}
\text{define} & \quad \text{(even-squares-foldr hi lo)} \\
& \quad \text{(foldr (lambda (a b)} \\
& \quad \quad \text{(cond [(even? a) (cons (sqr a) b)]} \\
& \quad \quad \quad \text{[else b]]))} \\
& \quad '\() \\
& \quad \text{(range hi lo -1)))}
\end{align*}
\]

\[
\uparrow
\]

Using recursion only:

\[
\begin{align*}
\text{define} & \quad \text{(even-squares-between between hi lo)} \\
\text{cond} & \quad \text{[(<= hi lo) '()]} \\
& \quad \quad \text{[(even? hi) (cons (sqr hi) (even-squares-between (- hi 1) lo))]} \\
& \quad \quad \quad \text{[else (even-squares-between (- hi 1) lo))])}
\end{align*}
\]
The same thing three ways

Higher order functions:

\[
\text{(define (muddle-down hi lo)}
\begin{align*}
&\text{ (map (lambda (x) (* x 2))} \\
&\text{ (filter (lambda (y) (= 1 (remainder y 3))))} \\
&\text{ (range hi lo -1))})
\end{align*}
\]

A single foldr:

\[
\text{(define (muddle-down-foldr hi lo)}
\begin{align*}
&\text{ (foldr (lambda (a b)} \\
&\text{ (cond [(= 1 (remainder a 3)) (cons (* a 2) b)]} \\
&\text{ [else b])])} \\
&\text{ '()} \\
&\text{ (range hi lo -1))})
\end{align*}
\]

Ex. Duplicate the behaviour of muddle-down and muddle-down-foldr using recursion only.
Nonempty lists

What is the largest value in an empty list? Is it zero? ∞? $-\infty$?

The question does not make sense. Some computations only make sense on a nonempty list.

For such a function, add a Requires section to the design recipe:

```scheme
;; (list-max L) return the greatest value in L.
;; list-max: (listof Int) -> Int
;; Requires: L is not empty.
;; Example:
(check-expect (list-max (list 3 7 4)) 7)
(check-expect (list-max (list -3 -7 -4)) -3)
```
If we require that our input be a nonempty list, we can’t use the empty list as a base case—we should never receive it as input!

Instead: `(empty? (rest L))` will return `#true` when L has just one value left in it. This is a perfect base case for our `list-max` function.

Write a recursive function `list-max` that consumes a nonempty `(listof Int)` and returns the largest value in the list.
You now have tools powerful enough to solve the problem we started with.
A Collatz sequence is defined as follows:

\[
s_{k+1} = \begin{cases}
\frac{s_k}{2} & \text{if } s_k \text{ is even} \\
3s_k + 1 & \text{otherwise.}
\end{cases}
\]

This does not fit into the templates we encountered. Solving it is a challenge, but possible!
Consider what `collatz-seq sk` need to do when:

1. `sk` is 1?
2. `sk` is an even number?
3. `sk` is an odd number other than 1?

Write a function `(collatz-seq sk)` that returns the Collatz sequence starting at `sk`, until it reaches 1.

- `(collatz-seq 13) => (list 13 40 20 10 5 16 8 4 2 1)`
- `(collatz-seq 21) => (list 21 64 32 16 8 4 2 1)`
- `(collatz-seq 1) => (list 1)`
Module Summary

- Be comfortable with the following terms: recursion, base case, recursive case, data definition.
- Understand recursive data definitions for Nat and (listof Any).
- Understand how to build a recursive template based on a recursive data definition, and be able to use the template to write recursive functions that consume the data type.

Further Reading: How to Design Programs Sections 9, 10