Lab 10: Local and lambda

Create a separate file for each question. Keep them in your "Labs" folder, with the name lijqk for Lab ij, Question k.

Download the headers for each function from the file 110-interface.rkt.

After you have completed a question (except class exercises), including creating tests for it, you can obtain feedback by submitting it and requesting a public test. Follow the instructions given in the Style Guide.

This lab makes use of the following data definitions:

```
;; A Tweet is a (list Str Str (listof Str)), where
;; * The first value is the name of the tweeter, starting with @
;; * The second value is message, containing at most 280 characters
;; * The third value is a list of hashtags, each starting with #
```

Language level: Intermediate Student with lambda

Important note: Do not write any explicitly recursive code in your solutions. Each solution should use at least one of the following abstract list functions: map, filter, foldr, build-list, sort, andmap, ormap. You may also find range useful.

1. [Class exercise with lab instructor assistance]

A prefix of a string s is a substring of s starting from position 0. Create a function *prefixes* that consumes a string, *str*; and produces a list of all non-empty prefixes of *str*.

```
For example:
     (prefixes "abcd") => (list "a" "ab" "abc" "abcd")
```

2. Complete a function *powers-of-two* that consumes a natural number, n, and produces a list of powers of 2, from 2^n down to $2^0 = 1$.

```
For example:

(powers-of-two 2) => (list 4 2 1)
```

3. [Part a] Complete a function mult-table that consumes two natural numbers, width and height, and produces a multiplication table of size width by height as a list of lists. The first element of the answer will be a list that is the first row of the multiplication table, and so on. This multiplication table will include a row/column for zero.

```
For example:
```

[Part b] Complete the function times-table, that works like mult-table, but this time there will not be a row/column for the products of zero. You are not allowed to use the built-in functions remove or remove-all for this.

For example:

4. Create a function *count-suffixes* that consumes a list of strings, *los*, and a string, *suffix*, and produces the number of strings in *los* which end with *suffix*. This is similar to count-starters from lecture.

```
For example:
    (count-suffixes (list "howdy" "there" "how" "are") "re")
=> 2
```

5. Create a function *matching-messages* that consumes a list of Tweets, *tweets*, and a string that starts with #, *hashtag*, and produces the list of strings corresponding to the messages in tweets whose hashtag list contains *hashtag*. Note the data definition of a Tweet included above.

For example:

Optional open-ended questions

Return to previous problems from labs, assignments, and lecture and identify where local and lambda might have been appropriate.

Helpful tips

Testing local helpers

Some local helpers might be complicated enough (insert, for example), that we want to test them on their own. However, you cannot use check-expects inside of a local. A possible strategy is to temporarily move this helper outside of the local, to the top level. There, you can test the function using check-expect. When testing is complete, move the function back into the local and delete the tests and examples.