1 Question 1

Write a function \((\text{list-pos \ los \ item})\) that consumes a \((\text{listof Str})\) and a \text{Str} and returns the position of the first occurrence of \text{item} in \text{los}.

\text{los} is non-empty and \text{item} is guaranteed to be in it. The first item is in position 0.

For example:

\[
\text{(list-pos \ (list \ "a" \ "b" \ "c") \ "b") \Rightarrow 1}
\]

Use recursion! Do not use \text{map}, \text{foldr}, or \text{filter}.

2 Question 2

Write a function \((\text{multiple \ s \ n})\) that returns the \text{Str} created by appending \text{n} copies of \text{s}.

For example:

\[
\text{(multiple \ \"abc\" \ 3) \Rightarrow \"abcabcabc"}
\]

Use recursion! Do not use \text{map}, \text{foldr}, or \text{filter}.

3 Question 3

Create a function \((\text{next-list \ L \ target})\) that consumes a \((\text{listof Any})\) and an \text{Any}, and returns the item in the list that appears after \text{target}.

\text{next-list} requires that \text{target} is present in \text{L}, and that it is not the last item in the list.

For example:

\[
\text{(next-list \ \{1 \ 2 \ 3\) \ 2) \Rightarrow 3}
\]

If \text{target} appears more than once in \text{L}, consider the first occurrence.

\[
\text{(next-list \ \{2 \ 45 \ 7 \ 8 \ 7 \ 3 \ 6 \ 7 \ 9\} \ 7) \Rightarrow 8}
\]

Use recursion! Do not use \text{map}, \text{foldr}, or \text{filter}.
4 Question 4

Write a function (difference lon) that consumes a (listof Num) and returns a list of differences between adjacent pairs in lon.

You may assume that lon is not empty.

For example:

(differences (list 42)) => '()
(differences (list 25 16 9 1 4)) => (list 9 7 8 -3)

! Use recursion! Do not use map, foldr, or filter.